
ioCONTROL
COMMAND REFERENCE

FORM 1301-060308—MARCH, 2006

43044 Business Park Drive • Temecula • CA 92590-3614
Phone: 800-321-OPTO (6786) or 951-695-3000

Fax: 800-832-OPTO (6786) or 951-695-2712
www.opto22.com

Product Support Services
800-TEK-OPTO (835-6786) or 951-695-3080

Fax: 951-695-3017
Email: support@opto22.com
Web: support.opto22.com

ioControl Command Reference
Form 1301-060308—MARCH, 2006

Copyright © 2001–2006 Opto 22.
All rights reserved.
Printed in the United States of America.

The information in this manual has been checked carefully and is believed to be accurate; however, Opto 22
assumes no responsibility for possible inaccuracies or omissions. Specifications are subject to change without
notice.

Opto 22 warrants all of its products to be free from defects in material or workmanship for 30 months from the
manufacturing date code. This warranty is limited to the original cost of the unit only and does not cover installation,
labor, or any other contingent costs. Opto 22 I/O modules and solid-state relays with date codes of 1/96 or later are
guaranteed for life. This lifetime warranty excludes reed relay, SNAP serial communication modules, SNAP PID
modules, and modules that contain mechanical contacts or switches. Opto 22 does not warrant any product,
components, or parts not manufactured by Opto 22; for these items, the warranty from the original manufacturer
applies. These products include, but are not limited to, OptoTerminal-G70, OptoTerminal-G75, and Sony Ericsson
GT-48; see the product data sheet for specific warranty information. Refer to Opto 22 form number 1042 for
complete warranty information.

Cyrano, Opto 22 FactoryFloor, Optomux, and Pamux are registered trademarks of Opto 22. Generation 4, ioControl,
ioDisplay, ioManager, ioProject, ioUtilities, mistic, Nvio, Nvio.net Web Portal, OptoConnect, OptoControl,
OptoDisplay, OptoENETSniff, OptoOPCServer, OptoScript, OptoServer, OptoTerminal, OptoUtilities, SNAP Ethernet
I/O, SNAP I/O, SNAP OEM I/O, SNAP PAC, SNAP Simple I/O, SNAP Ultimate I/O, and SNAP Wireless LAN I/O are
trademarks of Opto 22.

ActiveX, JScript, Microsoft, MS-DOS, VBScript, Visual Basic, Visual C++, and Windows are either registered
trademarks or trademarks of Microsoft Corporation in the United States and other countries. Linux is a registered
trademark of Linus Torvalds. Unicenter is a registered trademark of Computer Associates International, Inc. ARCNET
is a registered trademark of Datapoint Corporation. Modbus is a registered trademark of Schneider Electric.
Wiegand is a registered trademark of Sensor Engineering Corporation. Nokia, Nokia M2M Platform, Nokia M2M
Gateway Software, and Nokia 31 GSM Connectivity Terminal are trademarks or registered trademarks of Nokia
Corporation. Sony is a trademark of Sony Corporation. Ericsson is a trademark of Telefonaktiebolaget LM Ericsson.

All other brand or product names are trademarks or registered trademarks of their respective companies or
organizations.
ii ioControl Command Reference

Table of Contents
Welcome ..xvii

About this Reference..xvii
Information Key ...xvii

Other Resources ..xviii
Documents and Online Help...xviii
Product Support..xviii

Commands by Command Group ...xx

A ... A-1
Absolute Value .. A-1
Accept Incoming Communication.. A-2
Add .. A-3
Add Message to Queue... A-4
Add User Error to Queue ... A-5
Add User I/O Unit Error to Queue.. A-6
AND ... A-7
AND? ... A-8
Append Character to String... A-9
Append String to String... A-10
Arccosine ... A-11
Arcsine... A-12
Arctangent ... A-13

B ... B-1
Bit AND.. B-1
Bit AND?.. B-3
Bit Clear ... B-4
Bit NOT .. B-5
Bit NOT? .. B-7
Bit Off?... B-8
Bit On? ... B-9
Bit OR... B-10
Bit OR?... B-12
Bit Rotate... B-13
ioControl Command Reference iii

Bit Set .. B-14
Bit Shift.. B-15
Bit Test .. B-17
Bit XOR .. B-18
Bit XOR?... B-20

C ... C-1
Calculate & Set Analog Gain .. C-1
Calculate & Set Analog Offset .. C-2
Calculate Strategy CRC ... C-3
Call Chart ... C-4
Calling Chart Running? .. C-5
Calling Chart Stopped?.. C-5
Calling Chart Suspended? ... C-6
Caused a Chart Error?.. C-7
Caused an I/O Unit Error?.. C-8
Chart Running? .. C-9
Chart Stopped? .. C-10
Chart Suspended? ... C-11
Clamp Float Table Element ... C-12
Clamp Float Variable ... C-13
Clamp Integer 32 Table Element ... C-14
Clamp Integer 32 Variable... C-15
Clamp Mistic PID Output ... C-16
Clamp Mistic PID Setpoint .. C-17
Clear All Errors .. C-18
Clear All Event Latches ... C-19
Clear All Latches ... C-20
Clear Communication Receive Buffer ... C-21
Clear Counter... C-22
Clear Event Latch... C-23
Clear HDD Module Off-Latches... C-24
Clear HDD Module On-Latches ... C-25
Clear Off-Latch .. C-26
Clear On-Latch ... C-27
Clear Pointer .. C-28
Clear Pointer Table Element.. C-28
Clear Receive Buffer.. C-29
Close Communication.. C-29
Comment (Block).. C-30
Comment (OptoControl Conversion Issue) .. C-31
Comment (Single Line) .. C-31
Communication Open? .. C-32
Communication to All I/O Points Enabled? ... C-33
Communication to All I/O Units Enabled?... C-34
Compare Strings .. C-35
iv ioControl Command Reference

Complement .. C-36
Continue Calling Chart .. C-37
Continue Chart... C-38
Continue Timer .. C-39
Convert Float to String .. C-40
Convert Hex String to Number .. C-41
Convert IEEE Hex String to Number .. C-42
Convert Integer 32 to IP Address String.. C-43
Convert IP Address String to Integer 32.. C-44
Convert Mistic I/O Hex String to Float .. C-45
Convert Number to Formatted Hex String... C-46
Convert Number to Hex String .. C-48
Convert Number to Mistic I/O Hex String... C-49
Convert Number to String ... C-50
Convert Number to String Field... C-51
Convert String to Float .. C-52
Convert String to Integer 32.. C-54
Convert String to Integer 64.. C-55
Convert String to Lower Case ... C-56
Convert String to Upper Case.. C-57
Copy Current Error to String .. C-58
Copy Date to String (DD/MM/YYYY) .. C-59
Copy Date to String (MM/DD/YYYY) .. C-60
Copy Time to String ... C-61
Cosine .. C-62

D ... D-1
Decrement Variable... D-1
Delay (mSec).. D-2
Delay (Sec)... D-3
Disable Communication to All I/O Points.. D-4
Disable Communication to All I/O Units ... D-5
Disable Communication to Event/Reaction .. D-6
Disable Communication to I/O Unit .. D-7
Disable Communication to Mistic PID Loop.. D-9
Disable Communication to PID Loop... D-10
Disable Communication to Point ... D-11
Disable Event/Reaction Group .. D-12
Disable I/O Unit Causing Current Error ... D-13
Disable Mistic PID Output ... D-14
Disable Mistic PID Output Tracking in Manual Mode .. D-15
Disable Mistic PID Setpoint Tracking in Manual Mode ... D-16
Disable Scanning for All Events .. D-17
Disable Scanning for Event ... D-18
Disable Scanning of Event/Reaction Group.. D-19
Divide... D-20
Down Timer Expired? .. D-21
ioControl Command Reference v

E ..E-1
Enable Communication to All I/O Points ... E-1
Enable Communication to All I/O Units .. E-2
Enable Communication to Event/Reaction.. E-3
Enable Communication to I/O Unit.. E-4
Enable Communication to Mistic PID Loop ... E-5
Enable Communication to PID Loop .. E-6
Enable Communication to Point .. E-7
Enable Event/Reaction Group ... E-8
Enable I/O Unit Causing Current Error .. E-9
Enable Mistic PID Output .. E-10
Enable Mistic PID Output Tracking in Manual Mode ... E-11
Enable Mistic PID Setpoint Tracking in Manual Mode... E-12
Enable Scanning for All Events ... E-13
Enable Scanning for Event .. E-14
Enable Scanning of Event/Reaction Group ... E-15
Equal? .. E-16
Equal to Numeric Table Element? ... E-17
Erase Files in Permanent Storage ... E-18
Error? ... E-19
Error on I/O Unit?... E-20
Event Occurred?... E-21
Event Occurring?.. E-22
Event/Reaction Communication Enabled? .. E-23
Event/Reaction Group Communication Enabled? ... E-24
Event Scanning Disabled? ... E-25
Event Scanning Enabled? .. E-26

F ..F-1
Find Character in String... F-1
Find Substring in String ... F-2
Float Valid? .. F-3

G ... G-1
Generate Checksum on String.. G-1
Generate Forward CCITT on String .. G-3
Generate Forward CRC-16 on String .. G-4
Generate N Pulses.. G-5
Generate Random Number... G-6
Generate Reverse CCITT on String... G-7
Generate Reverse CRC-16 on String .. G-8
Generate Reverse CRC-16 on Table (32 bit)... G-9
Get & Clear All HDD Module Off-Latches.. G-10
Get & Clear All HDD Module On-Latches .. G-12
Get & Clear Analog Filtered Value ... G-14
vi ioControl Command Reference

Get & Clear Analog Maximum Value.. G-15
Get & Clear Analog Minimum Value... G-16
Get & Clear Analog Totalizer Value .. G-17
Get & Clear Counter .. G-18
Get & Clear Event Latches .. G-19
Get & Clear HDD Module Counter .. G-20
Get & Clear HDD Module Counters .. G-21
Get & Clear HDD Module Off-Latches .. G-22
Get & Clear HDD Module On-Latches... G-24
Get & Clear Off-Latch.. G-25
Get & Clear On-Latch .. G-26
Get & Restart Off-Pulse Measurement... G-27
Get & Restart Off-Time Totalizer .. G-28
Get & Restart On-Pulse Measurement ... G-29
Get & Restart On-Time Totalizer ... G-30
Get & Restart Period ... G-31
Get All HDD Module Off-Latches.. G-32
Get All HDD Module On-Latches .. G-34
Get All HDD Module States .. G-36
Get Analog Filtered Value ... G-38
Get Analog Maximum Value ... G-39
Get Analog Minimum Value.. G-40
Get Analog Square Root Filtered Value .. G-41
Get Analog Square Root Value ... G-42
Get Analog Totalizer Value ... G-43
Get Available File Space ... G-44
Get Chart Status .. G-45
Get Communication Handle Value .. G-46
Get Control Engine Address .. G-46
Get Control Engine Type.. G-47
Get Counter ... G-48
Get Day.. G-49
Get Day of Week ... G-50
Get End-Of-Message Terminator .. G-51
Get Error Code of Current Error ... G-52
Get Error Count .. G-53
Get Event Latches.. G-54
Get Firmware Version.. G-55
Get Frequency.. G-56
Get HDD Module Counters.. G-57
Get HDD Module Off-Latches ... G-58
Get HDD Module On-Latches.. G-60
Get HDD Module States.. G-61
Get High Bits of Integer 64.. G-62
Get Hours... G-63
Get ID of Block Causing Current Error ... G-64
ioControl Command Reference vii

Get I/O Unit as Binary Value .. G-65
Get I/O Unit Event Message State... G-67
Get I/O Unit Event Message Text .. G-68
Get I/O Unit Scratch Pad Bits ... G-69
Get I/O Unit Scratch Pad Float Element ... G-70
Get I/O Unit Scratch Pad Float Table ... G-72
Get I/O Unit Scratch Pad Integer 32 Element .. G-74
Get I/O Unit Scratch Pad Integer 32 Table... G-76
Get I/O Unit Scratch Pad String Element ... G-78
Get I/O Unit Scratch Pad String Table ... G-80
Get Julian Day .. G-82
Get Length of Table .. G-83
Get Line Causing Current Error... G-84
Get Low Bits of Integer 64 ... G-85
Get Minutes.. G-86
Get Mistic PID Control Word.. G-87
Get Mistic PID D Term.. G-88
Get Mistic PID I Term ... G-89
Get Mistic PID Input ... G-90
Get Mistic PID Mode .. G-91
Get Mistic PID Output .. G-92
Get Mistic PID Output Rate of Change .. G-93
Get Mistic PID P Term .. G-94
Get Mistic PID Scan Rate ... G-95
Get Mistic PID Setpoint.. G-96
Get Month .. G-97
Get Name of Chart Causing Current Error.. G-98
Get Name of I/O Unit Causing Current Error.. G-99
Get Nth Character .. G-100
Get Number of Characters Waiting ... G-101
Get Off-Latch .. G-102
Get Off-Pulse Measurement .. G-103
Get Off-Pulse Measurement Complete Status .. G-104
Get Off-Time Totalizer .. G-105
Get On-Latch... G-106
Get On-Pulse Measurement ... G-107
Get On-Pulse Measurement Complete Status ... G-108
Get On-Time Totalizer .. G-109
Get Period ... G-110
Get Period Measurement Complete Status ... G-111
Get PID Configuration Flags ... G-112
Get PID Current Input ... G-113
Get PID Current Setpoint .. G-114
Get PID Feed Forward... G-115
Get PID Feed Forward Gain .. G-116
Get PID Forced Output When Input Over Range .. G-117
viii ioControl Command Reference

Get PID Forced Output When Input Under Range... G-118
Get PID Gain .. G-119
Get PID Input ... G-120
Get PID Input High Range.. G-121
Get PID Input Low Range .. G-122
Get PID Max Output Change ... G-123
Get PID Min Output Change.. G-124
Get PID Mode .. G-125
Get PID Output... G-126
Get PID Output High Clamp... G-127
Get PID Output Low Clamp.. G-128
Get PID Scan Time... G-129
Get PID Setpoint .. G-130
Get PID Status Flags.. G-131
Get PID Tune Derivative .. G-132
Get PID Tune Integral .. G-133
Get Pointer From Name... G-134
Get Seconds .. G-135
Get Seconds Since Midnight... G-136
Get Severity of Current Error ... G-137
Get String Length .. G-138
Get Substring... G-139
Get System Time ... G-140
Get Target Address State.. G-141
Get Type From Name... G-142
Get Value From Name ... G-143
Get Year... G-145
Greater? ... G-146
Greater Than Numeric Table Element?... G-147
Greater Than or Equal?.. G-148
Greater Than or Equal To Numeric Table Element?.. G-149

H ...H-1
Hyperbolic Cosine.. H-1
Hyperbolic Sine ... H-2
Hyperbolic Tangent ... H-3

I ... I-1
Increment Variable ... I-1
I/O Point Communication Enabled?.. I-2
I/O Unit Communication Enabled? ... I-3
I/O Unit Ready? .. I-4
IVAL Move Numeric Table to I/O Unit ... I-5
IVAL Set Analog Point .. I-6
IVAL Set Counter .. I-7
ioControl Command Reference ix

IVAL Set Digital Binary ... I-8
IVAL Set Digital-64 I/O Unit from MOMO Masks.. I-9
IVAL Set Frequency .. I-10
IVAL Set I/O Unit from MOMO Masks ... I-11
IVAL Set Mistic PID Control Word ... I-13
IVAL Set Mistic PID Process Term ... I-14
IVAL Set Mixed 64 I/O Unit from MOMO Masks... I-15
IVAL Set Mixed I/O Unit from MOMO Masks.. I-16
IVAL Set Off-Latch .. I-18
IVAL Set Off-Pulse .. I-19
IVAL Set Off-Totalizer... I-20
IVAL Set On-Latch .. I-21
IVAL Set On-Pulse .. I-22
IVAL Set On-Totalizer ... I-23
IVAL Set Period... I-24
IVAL Set Simple 64 I/O Unit from MOMO Masks.. I-25
IVAL Set TPO Percent ... I-26
IVAL Set TPO Period ... I-27
IVAL Turn Off .. I-28
IVAL Turn On... I-29

L ..L-1
Less? .. L-1
Less Than Numeric Table Element? .. L-2
Less Than or Equal?... L-3
Less Than or Equal to Numeric Table Element? ... L-4
Listen for Incoming Communication.. L-5
Load Files From Permanent Storage ... L-7

M ... M-1
Make Integer 64 .. M-1
Maximum... M-2
Minimum ... M-3
Mistic PID Loop Communication Enabled? ... M-4
Modulo .. M-5
Move.. M-6
Move 32 Bits ... M-7
Move from Numeric Table Element .. M-8
Move from Pointer Table Element .. M-9
Move from String Table Element .. M-10
Move I/O Unit to Numeric Table ... M-12
Move Numeric Table Element to Numeric Table.. M-13
Move Numeric Table to I/O Unit ... M-14
Move Numeric Table to Numeric Table .. M-15
Move String ... M-16
Move to Numeric Table Element .. M-17
Move to Numeric Table Elements... M-18
x ioControl Command Reference

Move to Pointer .. M-19
Move to Pointer Table Element.. M-21
Move to String Table Element ... M-23
Move to String Table Elements.. M-24
Multiply .. M-25

N ...N-1
Natural Log... N-1
NOT... N-2
NOT?... N-3
Not Equal? .. N-4
Not Equal to Numeric Table Element? ... N-5
Numeric Table Element Bit Clear ... N-6
Numeric Table Element Bit Set .. N-7
Numeric Table Element Bit Test .. N-8

O ...O-1
Off? .. O-1
Off-Latch Set?.. O-2
On?... O-3
On-Latch Set? .. O-4
Open Outgoing Communication .. O-4
OR .. O-6
OR? .. O-7

P ... P-1
Pause Timer ... P-1
PID Loop Communication Enabled?... P-2
Pointer Equal to NULL?.. P-3
Pointer Table Element Equal to NULL? ... P-4

R ... R-1
Raise e to Power ... R-1
Raise to Power .. R-2
Ramp Analog Output ... R-3
Read Event/Reaction Hold Buffer ... R-4
Read Number from I/O Unit Memory Map ... R-5
Read Numeric Table from I/O Unit Memory Map... R-7
Read String from I/O Unit Memory Map... R-9
Read String Table from I/O Unit Memory Map... R-11
Receive Character ... R-13
Receive N Characters ... R-14
Receive Numeric Table ... R-16
Receive Pointer Table.. R-17
Receive String .. R-19
Receive String Table ... R-21
ioControl Command Reference xi

Remove Current Error and Point to Next Error .. R-22
Retrieve Strategy CRC... R-23
Round... R-24

S ..S-1
Save Files To Permanent Storage ... S-1
Send Communication Handle Command... S-2
Seed Random Number .. S-4
Set All Target Address States... S-5
Set Analog Filter Weight... S-7
Set Analog Gain .. S-8
Set Analog Load Cell Fast Settle Level ... S-9
Set Analog Load Cell Filter Weight... S-10
Set Analog Offset .. S-11
Set Analog Totalizer Rate ... S-12
Set Analog TPO Period .. S-14
Set Communication Handle Value .. S-15
Set Date... S-16
Set Day .. S-17
Set Digital I/O Unit from MOMO Masks... S-18
Set Digital-64 I/O Unit from MOMO Masks ... S-19
Set Down Timer Preset Value ... S-21
Set End-Of-Message Terminator .. S-22
Set HDD Module from MOMO Masks .. S-23
Set Hours ... S-25
Set I/O Unit Event Message State .. S-26
Set I/O Unit Event Message Text.. S-27
Set I/O Unit from MOMO Masks .. S-29
Set I/O Unit Scratch Pad Bits from MOMO Mask... S-31
Set I/O Unit Scratch Pad Float Element .. S-32
Set I/O Unit Scratch Pad Float Table .. S-34
Set I/O Unit Scratch Pad Integer 32 Element.. S-36
Set I/O Unit Scratch Pad Integer 32 Table .. S-38
Set I/O Unit Scratch Pad String Element .. S-40
Set I/O Unit Scratch Pad String Table... S-41
Set Minutes ... S-43
Set Mistic PID Control Word ... S-44
Set Mistic PID D Term... S-45
Set Mistic PID I Term .. S-46
Set Mistic PID Input .. S-47
Set Mistic PID Mode to Auto .. S-48
Set Mistic PID Mode to Manual ... S-49
Set Mistic PID Output Rate of Change.. S-50
Set Mistic PID P Term ... S-51
Set Mistic PID Scan Rate .. S-52
Set Mistic PID Setpoint ... S-53
Set Mixed 64 I/O Unit from MOMO Masks .. S-54
xii ioControl Command Reference

Set Mixed I/O Unit from MOMO Masks ... S-55
Set Month.. S-57
Set Nth Character.. S-58
Set PID Configuration Flags .. S-59
Set PID Feed Forward.. S-60
Set PID Feed Forward Gain ... S-61
Set PID Forced Output When Input Over Range ... S-62
Set PID Forced Output When Input Under Range ... S-63
Set PID Gain .. S-64
Set PID Input.. S-65
Set PID Input High Range.. S-66
Set PID Input Low Range... S-67
Set PID Max Output Change ... S-68
Set PID Min Output Change .. S-69
Set PID Mode .. S-70
Set PID Output ... S-71
Set PID Output High Clamp ... S-72
Set PID Output Low Clamp.. S-73
Set PID Scan Time... S-74
Set PID Setpoint .. S-75
Set PID Tune Derivative .. S-76
Set PID Tune Integral .. S-77
Set Seconds... S-78
Set Simple 64 I/O Unit from MOMO Masks ... S-79
Set Target Address State.. S-81
Set Time .. S-83
Set TPO Percent... S-84
Set TPO Period... S-85
Set Up Timer Target Value.. S-86
Set Variable False ... S-87
Set Variable True... S-88
Set Year ... S-89
Shift Numeric Table Elements .. S-90
Sine.. S-91
Square Root ... S-92
Start Chart ... S-93
Start Continuous Square Wave... S-94
Start Counter ... S-95
Start Off-Pulse ... S-96
Start On-Pulse ... S-97
Start Timer... S-98
Stop Chart.. S-99
Stop Chart on Error .. S-100
Stop Counter.. S-101
Stop Timer ... S-102
String Equal? ... S-103
ioControl Command Reference xiii

String Equal to String Table Element? .. S-104
Subtract ... S-105
Suspend Chart ... S-106
Suspend Chart on Error ... S-107

T ..T-1
Tangent.. T-1
Test Equal .. T-2
Test Equal Strings ... T-3
Test Greater... T-4
Test Greater or Equal .. T-5
Test Less.. T-6
Test Less or Equal ... T-7
Test Not Equal ... T-8
Test Within Limits ... T-9
Timer Expired? ... T-10
Transfer N Characters ... T-11
Transmit Character ... T-13
Transmit NewLine ... T-14
Transmit Numeric Table ... T-15
Transmit Pointer Table ... T-16
Transmit/Receive Mistic I/O Hex String ... T-18
Transmit/Receive String.. T-20
Transmit String ... T-22
Transmit String Table ... T-23
Truncate... T-24
Turn Off.. T-25
Turn Off HDD Module Point .. T-26
Turn On .. T-27
Turn On HDD Module Point ... T-28

U ... U-1
Up Timer Target Time Reached? .. U-1

V ... V-1
Variable False? .. V-1
Variable True? ... V-2
Verify Checksum on String .. V-3
Verify Forward CCITT on String ... V-4
Verify Forward CRC-16 on String .. V-5
Verify Reverse CCITT on String ... V-6
Verify Reverse CRC-16 on String... V-7

W ..W-1
xiv ioControl Command Reference

Within Limits? ... W-1
Write I/O Unit Configuration to EEPROM ... W-2
Write Number to I/O Unit Memory Map... W-3
Write Numeric Table to I/O Unit Memory Map.. W-4
Write String Table to I/O Unit Memory Map.. W-7
Write String to I/O Unit Memory Map.. W-9

X ... X-1
XOR.. X-1
XOR? .. X-2

Appendix A: Opto 22 Brain Families ...App-1

Index ... Index-1
ioControl Command Reference xv

xvi ioControl Command Reference

Welcome
Welcome to ioControl™, Opto 22’s visual control language for SNAP Ultimate I/O™ and other
Opto 22 control systems. ioControl provides a complete and powerful set of commands for all
your industrial control needs.

About this Reference
This command reference describes in detail all ioControl programming commands, or
instructions.The commands are listed alphabetically. To find a command by its command group,
such as Analog Point commands or Control Engine commands, see the chart starting on page xx.

The ioControl User’s Guide, in a separate binder, explains how to install and use ioControl. For
helpful information on using commands, see Chapter 10, “Programming with Commands,” in the
user’s guide.

This reference assumes that you are already familiar with Microsoft® Windows® on your
personal computer. If you are not familiar with Windows or your PC, refer to the documentation
from Microsoft and your computer manufacturer.

Information Key
Commands with the Pro icon are available only in ioControl Professional, not in the basic version
of ioControl.
ioControl Command Reference xvii

Other Resources

Documents and Online Help
To help you understand and use ioControl systems, the following resources are provided:

• Online Help is available in ioControl and in most of the utility applications. To open online
Help, choose Help➞Contents and Index in any screen.

• ioControl User’s Guide shows how to install and use ioControl.

• ioControl Command Reference contains detailed information about each command
(instruction) available in ioControl.

• A quick reference card, located in the front pocket of the ioControl Command Reference,
lists all ioControl commands plus their OptoScript™ code equivalents and arguments.

• ioManager User’s Guide and other guides provided with specific hardware help you
install, configure, and use controllers and I/O units.

Online versions (Adobe® Acrobat® format) of ioControl documents are provided on the CD that
came with your controller or purchase of Professional software and are also available from the
Help menu in ioControl. To view a document, select Help➞Manuals, and then choose a
document from the submenu.

When you purchase ioControl Professional or ioProject Professional, you also receive a complete
set of printed documents.

Resources are also available on the Opto 22 Web site at www.opto22.com. You can conveniently
access the Web site using the Help menu in ioControl. Select Help➞Opto 22 on the Web, and
then select an online resource from the submenu.

Product Support
If you have any questions about ioControl, you can call, fax, or email Opto 22 Product Support.

Phone: 800-TEK-OPTO (835-6786)
951-695-3080
(Hours are Monday through Friday,
7 a.m. to 5 p.m. Pacific Time)

Fax: 951-695-3017

Email: support@opto22.com

Opto 22 Web site: support.opto22.com

NOTE: Email messages
and phone calls to
Opto 22 Product Support
are grouped together
and answered in the
order received.
xviii ioControl Command Reference

When calling for technical support, be prepared to provide the following information about your
system to the Product Support engineer:

• Software and version being used

• Firmware versions

• PC configuration (type of processor, speed, memory, operating system)

• A complete description of your hardware and operating systems, including:
– type of power supply
– types of I/O units installed
– third-party devices installed (for example, barcode readers)

• Specific error messages seen.
ioControl Command Reference xix

Commands by Command Group

ioControl Command See pg OptoScript Equivalent (Arguments)

Di
gi

ta
l P

oi
nt Clear All Latches C-20 ClearAllLatches(On I/O Unit)

Clear Counter C-22 ClearCounter(On Point)
Clear Off-Latch C-26 ClearOffLatch(On Point)
Clear On-Latch C-27 ClearOnLatch(On Point)
Generate N Pulses G-5 GenerateNPulses(On Time (Seconds), Off Time

(Seconds), Number of Pulses, On Point)
Get & Clear Counter G-18 GetClearCounter(From Point)
Get & Clear Off-Latch G-25 GetClearOffLatch(From Point)
Get & Restart Off-Pulse Measurement G-27 GetRestartOffPulseMeasurement(From Point)
Get & Restart Off-Time Totalizer G-28 GetRestartOffTimeTotalizer(From Point)
Get & Restart On-Pulse Measurement G-29 GetRestartOnPulseMeasurement(From Point)
Get & Restart On-Time Totalizer G-30 GetRestartOnTimeTotalizer(From Point)
Get & Restart Period G-31 GetRestartPeriod(From Point)
Get & Clear On-Latch G-26 GetClearOnLatch(From Point)
Get Counter G-48 GetCounter(From Point)
Get Frequency G-56 GetFrequency(From Point)
Get Off-Latch G-102 GetOffLatch(From Point)
Get Off-Pulse Measurement G-103 GetOffPulseMeasurement(From Point)
Get Off-Pulse Measurement Complete Status G-104 GetOffPulseMeasurementCompleteStatus(From Point)
Get Off-Time Totalizer G-105 GetOffTimeTotalizer(From Point)
Get On-Latch G-106 GetOnLatch(From Point)
Get On-Pulse Measurement G-107 GetOnPulseMeasurement(From Point)
Get On-Pulse Measurement Complete Status G-108 GetOnPulseMeasurementCompleteStatus(From Point)
Get On-Time Totalizer G-109 GetOnTimeTotalizer(From Point)
Get Period G-110 GetPeriod(From Point)
Get Period Measurement Complete Status G-111 GetPeriodMeasurementCompleteStatus(From Point)
Off? O-1 IsOff(Point)
Off-Latch Set? O-2 IsOffLatchSet(On Point)
On? O-3 IsOffLatchSet(On Point)
On-Latch Set? O-4 IsOn(Point)
Set TPO Percent S-84 SetTpoPercent(To Percent, On Point)
Set TPO Period S-85 SetTpoPeriod(To Seconds, On Point)
Start Continuous Square Wave S-94 StartContinuousSquareWave(On Time (Seconds), Off

Time (Seconds), On Point)
Start Counter S-95 StartCounter(On Point)
Start Off-Pulse S-96 StartOffPulse(Off Time (Seconds), On Point)
Start On-Pulse S-97 StartOnPulse(On Time (Seconds), On Point)
Stop Counter S-101 StopCounter(On Point)
Turn Off T-25 TurnOff(Output)
Turn On T-27 TurnOn(Output)
xx ioControl Command Reference

An
al

og
 P

oi
nt Calculate & Set Analog Gain C-1 CalcSetAnalogGain(On Point)

Calculate & Set Analog Offset C-2 CalcSetAnalogOffset(On Point)
Get & Clear Analog Filtered Value G-14 GetClearAnalogFilteredValue(From)
Get & Clear Analog Maximum Value G-15 GetClearAnalogMaxValue(From)
Get & Clear Analog Minimum Value G-16 GetClearAnalogMinValue(From)
Get & Clear Analog Totalizer Value G-17 GetClearAnalogTotalizerValue(From)
Get Analog Filtered Value G-38 GetAnalogFilteredValue(From)
Get Analog Maximum Value G-39 GetAnalogMaxValue(From)
Get Analog Minimum Value G-40 GetAnalogMinValue(From)
Get Analog Square Root Filtered Value G-41 GetAnalogSquareRootFilteredValue(From)
Get Analog Sqaure Root Value G-42 GetAnalogSquareRootValue(From)
Get Analog Totalizer Value G-43 GetAnalogTotalizerValue(From)
Ramp Analog Output R-3 RampAnalogOutput(Ramp Endpoint, Units/Sec, Point

to Ramp)
Set Analog Filter Weight S-7 SetAnalogFilterWeight(To, On Point)
Set Analog Gain S-8 SetAnalogGain(To, On Point)
Set Analog Load Cell Fast Settle Level S-9 SetAnalogLoadCellFastSettleLevel(To, On Point)
Set Analog Load Cell Filter Weight S-10 SetAnalogLoadCellFilterWeight(To, On Point)
Set Analog Offset S-11 SetAnalogOffset(To, On Point)
Set Analog Totalizer Rate S-12 SetAnalogTotalizerRate(To Seconds, On Point)
Set Analog TPO Period S-14 SetAnalogTpoPeriod(To, On Point)

Ch
ar

t Call Chart C-4 CallChart(Chart)
Calling Chart Running? C-5 IsCallingChartRunning()
Calling Chart Stopped? C-5 IsCallingChartStopped()
Calling Chart Suspended? C-6 IsCallingChartSuspended()
Chart Running? C-9 IsChartRunning(Chart)
Chart Stopped? C-10 IsChartStopped(Chart)
Chart Suspended? C-11 IsChartSuspended(Chart)
Continue Calling Chart C-37 ContinueCallingChart()
Continue Chart C-38 ContinueChart(Chart)
Get Chart Status G-45 GetChartStatus(Chart)
Start Chart S-93 StartChart(Chart)
Stop Chart S-99 StopChart(Chart)
Suspend Chart S-106 SuspendChart(Chart)

M
is

ce
lla

ne
ou

s Comment (Block) C-30 /* block comment */
Comment (Single Line) C-31 // single line comment
Float Valid? F-3 IsFloatValid(Float)
Generate Reverse CRC-16 on Table (32 bit) G-9 GenerateReverseCrc16OnTable32(Start Value, Table,

Starting Element, Number of Elements)
Get Length of Table G-83 GetLengthOfTable(Table)
Get Type From Name G-142 GetTypeFromName(Name)
Get Value From Name G-143 GetValueFromName(Name, Put Result In)
Move M-6 x = y;
Move from Numeric Table Element M-8 x = nt[0];
Move Numeric Table Element to Numeric

Table
M-13 nt1[0] = nt2[5];

Move Numeric Table to Numeric Table M-15 MoveNumTableToNumTable(From Table, From Index, To
Table, To Index, Length)

Move to Numeric Table Element M-17 nt[0] = x;
Move to Numeric Table Elements M-18 MoveToNumTableElements(From, Start Index, End

Index, Of Table)
Shift Numeric Table Elements S-90 ShiftNumTableElements(Shift Count, Table)

ioControl Command See pg OptoScript Equivalent (Arguments)
ioControl Command Reference xxi

Er
ro

r H
an

dl
in

g Add Message to Queue A-4 AddMessageToQueue(Severity, Message)
Add User Error to Queue A-5 AddUserErrorToQueue(Error Number)
Add User I/O Unit Error to Queue A-6 AddUserIoUnitErrorToQueue(Error Number, I/O Unit)
Caused a Chart Error? C-7 HasChartCausedError(Chart)
Caused an I/O Unit Error? C-8 HasIoUnitCausedError(I/O Unit)
Clear All Errors C-18 ClearAllErrors()
Copy Current Error to String C-58 CurrentErrorToString(Delimiter, String)
Disable I/O Unit Causing Current Error D-13 DisableIoUnitCausingCurrentError()
Enable I/O Unit Causing Current Error E-9 EnableIoUnitCausingCurrentError()
Error? E-19 IsErrorPresent()
Error on I/O Unit? E-20 IsErrorOnIoUnit()
Get Error Code of Current Error G-52 GetErrorCodeOfCurrentError()
Get Error Count G-53 GetErrorCount()
Get ID of Block Causing Current Error G-64 GetIdOfBlockCausingCurrentError()
Get Line Causing Current Error G-84 GetLineCausingCurrentError()
Get Name of Chart Causing Current Error G-98 GetNameOfChartCausingCurrentError(Put in)
Get Name of I/O Unit Causing Current Error G-99 GetNameOfIoUnitCausingCurrentError(Put in)
Get Severity of Current Error G-137 GetSeverityOfCurrentError()
Remove Current Error and Point to Next

Error
R-22 RemoveCurrentError()

Stop Chart on Error S-100 StopChartOnError()
Suspend Chart on Error S-107 SuspendChartOnError()

I/O
 U

ni
t Get I/O Unit as Binary Value G-65 GetIoUnitAsBinaryValue(I/O Unit)

Get Target Address State G-141 GetTargetAddressState(Enable Mask, Active Mask, I/O
Unit)

I/O Unit Ready? I-4 IsIoUnitReady(I/O Unit)
IVAL Move Numeric Table to I/O Unit I-5 IvalMoveNumTableToIoUnit(Start at Index, Of Table,

Move to)
Move I/O Unit to Numeric Table M-12 MoveIoUnitToNumTable(I/O Unit, Starting Index, Of

Table)
Move Numeric Table to I/O Unit M-14 MoveNumTableToIoUnit(Start at Index, Of Table, Move

to)
Set All Target Address States S-5 SetAllTargetAddressStates(Must-On Mask, Must-Off

Mask, Active Mask)
Set I/O Unit from MOMO Masks S-29 SetIoUnitFromMomo(Must-On Mask, Must-Off Mask,

Digital I/O Unit)
Set Target Address State S-81 SetTargetAddressState(Must-On Mask, Must-Off Mask,

Active Mask, I/O Unit)
Write I/O Unit Configuration to EEPROM W-2 WriteIoUnitConfigToEeprom(On I/O Unit)

ioControl Command See pg OptoScript Equivalent (Arguments)
xxii ioControl Command Reference

I/O
 U

ni
t—

Sc
ra

tc
h

Pa
d Get I/O Unit Scratch Pad Bits G-69 GetIoUnitScratchPadBits(I/O Unit, Put Result in)

Get I/O Unit Scratch Pad Float Element G-70 GetIoUnitScratchPadFloatElement(I/O Unit, Index,
Put Result in)

Get I/O Unit Scratch Pad Float Table G-72 GetIoUnitScratchPadFloatTable(I/O Unit, Length,
From Index, To Index, To Table)

Get I/O Unit Scratch Pad Integer 32 Element G-74 GetIoUnitScratchPadInt32Element(I/O Unit, Index,
Put Result in)

Get I/O Unit Scratch Pad Integer 32 Table G-76 GetIoUnitScratchPadInt32Table(I/O Unit, Length,
From Index, To Index, To Table)

Get I/O Unit Scratch Pad String Element G-78 GetIoUnitScratchPadStringElement(I/O Unit, Index,
Put Result in)

Get I/O Unit Scratch Pad String Table G-80 GetIoUnitScratchPadString(I/O Unit, Length, From
Index, To Index, To Table)

Set I/O Unit Scratch Pad Bits from MOMO
Mask

S-31 SetIoUnitScratchPadBitsFromMomo(I/O Unit, Must-On
Mask, Must-Off Mask)

Set I/O Unit Scratch Pad Float Element S-32 SetIoUnitScratchPadFloatElement(I/O Unit, Index,
From)

Set I/O Unit Scratch Pad Float Table S-34 SetIoUnitScratchPadFloatTable(I/O Unit, Length, To
Index, From Index, From Table)

Set I/O Unit Scratch Pad Integer 32 Element S-36 SetIoUnitScratchPadInt32Element(I/O Unit, Index,
From)

Set I/O Unit Scratch Pad Integer 32 Table S-38 SetIoUnitScratchPadInt32Table(I/O Unit, Length, To
Index, From Index, From Table)

Set I/O Unit Scratch Pad String Element S-40 SetIoUnitScratchPadStringElement(I/O Unit, Index,
From)

Set I/O Unit Scratch Pad String Table S-41 SetIoUnitScratchPadStringTable(I/O Unit, Length, To
Index, From Index, From Table)

I/O
 U

ni
t—

M
em

or
y

M
ap Read Number from I/O Unit Memory Map R-5 ReadNumFromIoUnitMemMap(I/O Unit, Mem address, To)

Read Numeric Table from I/O Unit Memory
Map

R-7 ReadNumTableFromIoUnitMemMap(Length, Start Index,
I/O Unit, Mem address, To)

Read String from I/O Unit Memory Map R-9 ReadStrFromIoUnitMemMap(Length, I/O Unit, Mem
address, To)

Read String Table from I/O Unit Memory Map R-11 ReadStrTableFromIoUnitMemMap(Length, Start Index,
I/O Unit, Mem address, To)

Write Number to I/O Unit Memory Map W-3 WriteNumToIoUnitMemMap(I/O Unit, Mem address,
Variable)

Write Numeric Table to I/O Unit Memory Map W-4 WriteNumTableToIoUnitMemMap(Length, Start Index,
I/O Unit, Mem address, Table)

Write String to I/O Unit Memory Map W-9 WriteStrToIoUnitMemMap(I/O Unit, Mem address,
Variable)

Write String Table to I/O Unit Memory Map W-7 WriteStrTableToIoUnitMemMap(Length, Start Index,
I/O Unit, Mem address, Table)

I/O
 U

ni
t—

Ev
en

t M
sg Get I/O Unit Event Message State G-67 GetIoUnitEventMsgState(I/O Unit, Event Message #,

Put Result in)
Get I/O Unit Event Message Text G-68 GetIoUnitEventMsgText(I/O Unit, Event Message #,

Put Result in)
Set I/O Unit Event Message State S-26 SetIoUnitEventMsgState(I/O Unit, Event Message #,

State)
Set I/O Unit Event Message Text S-27 SetIoUnitEventMsgText(I/O Unit, Event Message #,

Message Text)

ioControl Command See pg OptoScript Equivalent (Arguments)
ioControl Command Reference xxiii

Ti
m

e/
Da

te Copy Date to String (DD/MM/YYYY) C-59 DateToStringDDMMYYYY(String)
Copy Date to String (MM/DD/YYYY) C-60 DateToStringMMDDYYYY(String)
Copy Time to String C-61 TimeToString(String)
Get Day G-49 GetDay()
Get Day of Week G-50 GetDayOfWeek()
Get Hours G-63 GetHours()
Get Julian Day G-82 GetJulianDay()
Get Minutes G-86 GetMinutes()
Get Month G-97 GetMonth()
Get Seconds G-135 GetSeconds()
Get Seconds Since Midnight G-136 GetSecondsSinceMidnight()
Get System Time G-140 GetSystemTime()
Get Year G-145 GetYear()
Set Date S-16 SetDate(To)
Set Day S-17 SetDay(To)
Set Hours S-25 SetHours(To)
Set Minutes S-43 SetMinutes(To)
Set Month S-57 SetMonth(To)
Set Seconds S-78 SetSeconds(To)
Set Time S-83 SetTime(To)
Set Year S-89 SetYear(To)

Ti
m

in
g Continue Timer C-39 ContinueTimer(Timer)

Delay (mSec) D-2 DelayMsec(Milliseconds)
Delay (Sec) D-3 DelaySec(Seconds)
Down Timer Expired? D-21 HasDownTimerExpired(Down Timer)
Pause Timer P-1 PauseTimer(Timer)
Set Down Timer Preset Value S-21 SetDownTimerPreset(Target Value, Down Timer)
Set Up Timer Target Value S-86 SetUpTimerTarget(Target Value, Up Timer)
Start Timer S-96 StartTimer(Timer)
Stop Timer S-102 StopTimer(Timer)
Timer Expired? T-10 HasTimerExpired(Timer)
Up Timer Target Time Reached? U-1 HasUpTimerReachedTargetTime(Up Timer)

 C
on

tro
l E

ng
in

e Calculate Strategy CRC C-3 CalcStrategyCrc()
Erase Files in Permanent Storage E-18 EraseFilesInPermanentStorage()
Get Available File Space G-44 GetAvailableFileSpace(File System Type)
Get Control Engine Address G-46 GetEngineAddress()
Get Control Engine Type G-47 GetEngineType()
Get Firmware Version G-55 GetFirmwareVersion(Put in)
Load Files From Permanent Storage L-7 LoadFilesFromPermanentStorage()
Retrieve Strategy CRC R-23 RetrieveStrategyCrc()
Save Files To Permanent Storage S-1 SaveFilesToPermanentStorage()

ioControl Command See pg OptoScript Equivalent (Arguments)
xxiv ioControl Command Reference

PI
D—

M
is

tic Clamp Mistic PID Output C-16 ClampMisticPidOutput(High Clamp, Low Clamp, On
PID Loop)

Clamp Mistic PID Setpoint C-17 ClampMisticPidSetpoint(High Clamp, Low Clamp, On
PID Loop)

Disable Mistic PID Output D-14 DisableMisticPidOutput(Of PID Loop)
Disable Mistic PID Output Tracking in Manual

Mode
D-15 DisableMisticPidOutputTrackingInManualMode(On

PID Loop)

Disable Mistic PID Setpoint Tracking in
Manual Mode

D-16 DisableMisticPidSetpointTrackingInManualMode(On
PID Loop)

Enable Mistic PID Output E-10 EnableMisticPidOutput(On PID Loop)
Enable Mistic PID Output Tracking in Manual

Mode
E-11 EnableMisticPidOutputTrackingInManualMode(On PID

Loop)

Enable Mistic PID Setpoint Tracking in
Manual Mode

E-12 EnableMisticPidSetpointTrackingInManualMode(On
PID Loop)

Get Mistic PID Control Word G-87 GetMisticPidControlWord(From PID Loop)
Get Mistic PID D Term G-88 GetMisticPidDTerm(From PID Loop)
Get Mistic PID I Term G-89 GetMisticPidITerm(From PID Loop)
Get Mistic PID Input G-90 GetMisticPidInput(PID Loop)
Get Mistic PID Mode G-91 GetMisticPidMode(PID Loop)
Get Mistic PID Output G-92 GetMisticPidOutput(PID Loop)
Get Mistic PID Output Rate of Change G-93 GetMisticPidOutputRateOfChange(From PID Loop)
Get Mistic PID P Term G-94 GetMisticPidPTerm(From PID Loop)
Get Mistic PID Scan Rate G-95 GetMisticPidScanRate(From PID Loop)
Get Mistic PID Setpoint G-96 GetMisticPidSetpoint(PID Loop)
Set Mistic PID Control Word S-44 SetMisticPidControlWord(On-Mask, Off-Mask, For

PID Loop)
Set Mistic PID D Term S-45 SetMisticPidDTerm(To, On PID Loop)
Set Mistic PID I Term S-46 SetMisticPidITerm(To, On PID Loop)
Set Mistic PID Input S-47 SetMisticPidInput(PID Loop, Input)
Set Mistic PID Mode to Auto S-48 SetMisticPidModeToAuto(On PID Loop)
Set Mistic PID Mode to Manual S-49 SetMisticPidModeToManual(On PID Loop)
Set Mistic PID Output Rate of Change S-50 SetMisticPidOutputRateOfChange(To, On PID Loop)
Set Mistic PID P Term S-51 SetMisticPidPTerm(To, On PID Loop)
Set Mistic PID Scan Rate S-52 SetMisticPidScanRate(To, On PID Loop)
Set Mistic PID Setpoint S-53 SetMisticPidSetpoint(PID Loop, Setpoint)

De
pr

ec
at

ed Set Digital I/O Unit from MOMO Masks S-18 SetDigitalIoUnitFromMomo(Must-On Mask, Must-Off
Mask, Digital I/O Unit)

Set Digital-64 I/O Unit from MOMO Masks S-19 SetDigital64IoUnitFromMomo(Must-On Mask, Must-Off
Mask, Digital-64 I/O Unit)

Set Mixed I/O Unit from MOMO Masks S-55 SetMixedIoUnitFromMomo(Must-On Mask, Must-Off Mask,
Mixed I/O Unit)

Set Mixed 64 I/O Unit from MOMO Masks S-54 SetMixed64IoUnitFromMomo(Must-On Mask, Must-Off
Mask, Mixed 64 I/O Unit)

Set Simple 64 I/O Unit from MOMO Masks S-79 SetSimple64IoUnitFromMomo(Must-On Mask, Must-Off
Mask, Simple 64 I/O Unit)

IVAL Set Digital Binary I-8 IvalSetDigitalBinary(On Mask, Off Mask, On I/O
Unit)

IVAL Set Digital-64 I/O Unit from MOMO
Masks

I-9 IvalSetDigital64IoUnitFromMomo(Must-On Mask,
Must-Off Mask, Digital 64 I/O Unit)

IVAL Set Mixed I/O Unit from MOMO Masks I-16 IvalSetMixedIoUnitFromMomo(Must-On Mask, Must-Off
Mask, Mixed I/O Unit)

IVAL Set Mixed 64 I/O Unit from MOMO
Masks

I-15 IvalSetMixed64IoUnitFromMomo(Must-On Mask, Must-Off
Mask, Mixed 64 I/O Unit)

IVAL Set Simple 64 I/O Unit from MOMO
Masks

I-25 IvalSetSimple64IoUnitFromMomo(Must-On Mask,
Must-Off Mask, Simple 64 I/O Unit)

ioControl Command See pg OptoScript Equivalent (Arguments)
ioControl Command Reference xxv

Co
m

m
un

ic
at

io
n Accept Incoming Communication A-2 AcceptIncomingCommunication(Communication Handle)

Clear Communication Receive Buffer C-21 ClearCommunicationReceiveBuffer(Communication
Handle)

Clear Receive Buffer C-29 ClearReceiveBuffer
Close Communication C-29 CloseCommunication(Communication Handle)
Communication Open? C-32 IsCommunicationOpen(Communication Handle)
Get Communication Handle Value G-46 GetCommunicationHandleValue(From, To)
Get End-Of-Message Terminator G-51 GetEndOfMessageTerminator (Communication Handle)
Get Number of Characters Waiting G-101 GetNumCharsWaiting(On Communication Handle)
Listen for Incoming Communication L-5 ListenForIncomingCommunication(Communication

Handle)
Open Outgoing Communication O-4 OpenOutgoingCommunication(Communication Handle)
Receive Character R-13 ReceiveChar(Communication Handle)
Receive N Characters R-14 ReceiveNChars(Put In, Number of Characters,

Communication Handle)
Receive Numeric Table R-16 ReceiveNumTable(Length, Start at Index, Of Table,

Communication Handle)
Receive Pointer Table R-17 ReceivePtrTable(Length, Start at Index, Of Table,

Communication Handle)
Receive String R-19 ReceiveString(Put In, Communication Handle)
Receive String Table R-21 ReceiveStrTable(Length, Start at Index, Of Table,

Communication Handle)
Send Communication Handle Command S-2 SendCommunicationHandleCommand(Communication

Handle, Command)
Set Communication Handle Value S-15 SetCommunicationHandleValue(Value, Communication

Handle)
Set End-Of-Message Terminator S-22 SetEndOfMessageTerminator (Communication Handle, To

Character)
Transfer N Characters T-11 TransferNChars(Destination Handle, Source Handle,

Num Chars)
Transmit Character T-13 TransmitChar(Character, Communication Handle)
Transmit NewLine T-14 TransmitNewLine(Communication Handle)
Transmit Numeric Table T-15 TransmitNumTable(Length, Start at Index, Of Table,

Communication Handle)
Transmit Pointer Table T-16 TransmitPtrTable(Length, Start at Index, Of Table,

Communication Handle)
Transmit/Receive Mistic I/O Hex String T-18 TransReceMisticIoHexStringWithCrc(Hex String, On

Port, Put Result in)
Transmit/Receive String T-20 TransmitReceiveString(String, Communication Handle,

Put Result in)
Transmit String Table T-23 TransmitStrTable(Length, Start at Index, Of Table,

Communication Handle)
Transmit String T-22 TransmitString(String, Communication Handle)

Ev
en

t/R
ea

ct
io

n Clear All Event Latches C-19 ClearAllEventLatches(On I/O Unit)
Clear Event Latch C-23 ClearEventLatch(On Event/Reaction)
Disable Scanning for All Events D-17 DisableScanningForAllEvents(On I/O Unit)
Disable Scanning for Event D-18 DisableScanningForEvent(Event/Reaction)
Disable Scanning of Event/Reaction Group D-19 DisableScanningOfEventReactionGroup(E/R Group)
Enable Scanning for All Events E-13 EnableScanningForAllEvents(On I/O Unit)
Enable Scanning for Event E-14 EnableScanningForEvent(Event/Reaction)
Enable Scanning of Event/Reaction Group E-15 EnableScanningOfEventReactionGroup()
Event Occurred? E-21 HasEventOccurred(Event/Reaction)
Event Occurring? E-22 IsEventOccurring(Event/Reaction)
Event/Reaction Communication Enabled? E-23 IsEventReactionCommEnabled(Event/Reaction)
Event Scanning Disabled? E-25 IsEventScanningDisabled(Event/Reaction)
Event Scanning Enabled? E-26 IsEventScanningEnabled(Event/Reaction)
Get & Clear Event Latches G-19 GetClearEventLatches(E/R Group)
Get Event Latches G-54 GetEventLatches(E/R Group)
Read Event/Reaction Hold Buffer R-4 ReadEventReactionHoldBuffer(Event/Reaction)

ioControl Command See pg OptoScript Equivalent (Arguments)
xxvi ioControl Command Reference

Si
m

ul
at

io
n Communication to All I/O Points Enabled? C-33 IsCommToAllIoPointsEnabled()

Communication To All I/O Units Enabled? C-34 IsCommToAllIoUnitsEnabled()
Disable Communication to All I/O Points D-4 DisableCommuncationToAllIoPoints()
Disable Communication to All I/O Units D-5 DisableCommunicationToAllIoUnits()
Disable Communication to Event/Reaction D-6 DisableCommunicationToEventReaction

(Event/Reaction)
Disable Communication to I/O Unit D-7 DisableCommunicationToIoUnit(I/O Unit)
Disable Communication to Mistic PID Loop D-9 DisableCommunicationtoMisticPidLoop(PID Loop)
Disable Communication to PID Loop D-10 DisableCommunicationtoPidLoop(PID Loop)
Disable Communication to Point D-11 DisableCommunicationToPoint(Point)
Disable Event/Reaction Group D-12 DisableEventReactionGroup(E/R Group)
Enable Communication to All I/O Points E-1 EnableCommunicationToAllIoPoints()
Enable Communication to All I/O Units E-2 EnableCommunicationToAllIoUnits()
Enable Communication to Event/Reaction E-3 EnableCommunicationToEventReaction(Event/Reaction)
Enable Communication to I/O Unit E-4 EnableCommunicationToIoUnit(I/O Unit)
Enable Communication to Mistic PID Loop E-5 EnableCommunicationToMisticPidLoop(PID Loop)
Enable Communication to PID Loop E-6 EnableCommunicationtoPidLoop(PID Loop)
Enable Communication to Point E-7 EnableCommunicationToPoint(Point)
Enable Event/Reaction Group E-8 EnableEventReactionGroup(E/R Group)
Event/Reaction Communication Enabled? E-23 IsEventReactionCommEnabled (Event/Reaction)
Event/Reaction Group Communication

Enabled?
E-24 IsEventReactionGroupEnabled(E/R Group)

I/O Point Communication Enabled? I-2 IsIoPointCommEnabled(I/O Point)
I/O Unit Communication Enabled? I-3 IsIoUnitCommEnabled(I/O Unit)
IVAL Set Analog Point I-6 IvalSetAnalogPoint(To, On Point)
IVAL Set Counter I-7 IvalSetCounter(To, On Point)
IVAL Set I/O Unit from MOMO Masks I-8 SetIoUnitFromMomo(Must-On Mask, Must-Off Mask,

Digital I/O Unit)
IVAL Set Frequency I-10 IvalSetFrequency(To, On Point)
IVAL Set Mistic PID Control Word I-13 IvalSetPidControlWord(On Mask, Off Mask, For PID

Loop)
IVAL Set Mistic PID Process Term I-14 IvalSetMisticPidProcessTerm(To, On PID Loop)
IVAL Set Off-Latch I-18 IvalSetOffLatch(To, On Point)
IVAL Set Off-Pulse I-19 IvalSetOffPulse(To, On Point)
IVAL Set Off-Totalizer I-20 IvalSetOffTotalizer(To, On Point)
IVAL Set On-Latch I-21 IvalSetOnLatch(To, On Point)
IVAL Set On-Pulse I-22 IvalSetOnPulse(To, On Point)
IVAL Set On-Totalizer I-23 IvalSetOnTotalizer(To, On Point)
IVAL Set Period I-24 IvalSetPeriod(To, On Point)
IVAL Set TPO Percent I-26 IvalSetTpoPercent(To, On Point)
IVAL Set TPO Period I-27 IvalSetTpoPeriod(Value, On Point)
IVAL Turn Off I-28 IvalTurnOff(Point)
IVAL Turn On I-29 IvalTurnOn(Point)
Mistic PID Loop Communication Enabled? M-4 IsMisticPidLoopCommEnabled(PID Loop)
PID Loop Communication Enabled? P-2 IsPidLoopCommEnabled(PID Loop)

Po
in

te
r Clear Pointer C-28 pn1 = null;

Clear Pointer Table Element C-28 pt[0] = null;
Get Pointer From Name G-134 GetPointerFromName(Name, Pointer)
Move from Pointer Table Element M-9 pn = pt[0];
Move to Pointer M-19 pn = &n;
Move to Pointer Table Element M-21 pt[0] = &n;
Pointer Equal to Null? P-3 pn == null
Pointer Table Element Equal to Null? P-4 pt[0] == null

ioControl Command See pg OptoScript Equivalent (Arguments)
ioControl Command Reference xxvii

M
at

he
m

at
ic

al Absolute Value A-1 AbsoluteValue(Of)
Add A-3 x + y
Arccosine A-11 Arccosine(Of)
Arcsine A-12 Arcsine(Of)
Arctangent A-13 Arctangent(Of)
Clamp Float Table Element C-12 ClampFloatTableElement(High Limit, Low Limit,

Element Index, Of Float Table)
Clamp Float Variable C-13 ClampFloatVariable(High Limit, Low Limit, Float

Variable)
Clamp Integer 32 Table Element C-14 ClampInt32TableElement(High Limit, Low Limit,

Element Index, Of Integer 32 Table)
Clamp Integer 32 Variable C-15 ClampInt32Variable(High Limit, Low Limit, Integer

32 Variable)
Complement C-36 -x
Cosine C-62 Cosine(Of)
Decrement Variable D-1 DecrementVariable(Variable)
Divide D-20 x / y
Generate Random Number G-6 GenerateRandomNumber()
Hyperbolic Cosine H-1 HyperbolicCosine(Of)
Hyperbolic Sine H-2 HyperbolicSine(Of)
Hyperbolic Tangent H-3 HyperbolicTangent(Of)
Increment Variable I-1 IncrementVariable(Variable)
Maximum M-2 Max(Compare, With)
Minimum M-3 Min(Compare, With)
Modulo M-5 x % y
Multiply M-25 x * y
Natural Log N-1 NaturalLog(Of)
Raise e to Power R-1 RaiseEToPower(Exponent)
Raise to Power R-2 Power(Raise, To the)
Round R-24 Round(Value)
Seed Random Number S-4 SeedRandomNumber()
Sine S-91 Sine(Of)
Square Root S-92 SquareRoot(Of)
Subtract S-105 x - y
Tangent T-1 Tangent(Of)
Truncate T-24 Truncate(Value)

St
rin

g Append Character to String A-9 s1 += 'a';
Append String to String A-10 s1 += s2;
Compare Strings C-35 CompareStrings(String 1, String 2)
Convert Float to String C-40 FloatToString(Convert, Length, Decimals, Put Result

in)
Convert Hex String to Number C-41 HexStringToNumber(Convert)
Convert IEEE Hex String to Number C-42 IEEEHexStringToNumber(Convert)
Convert Integer 32 to IP Address String C-43 Int32ToIpAddressString(Convert, Put Result In)
Convert IP Address String to Integer 32 C-44 IpAddressStringToInt32(Convert)
Convert Mistic I/O Hex String to Float C-45 MisticIoHexToFloat(Convert)
Convert Number to Formatted Hex String C-46 NumberToFormattedHexString(Convert, Length, Put

Result in)
Convert Number to Hex String C-48 NumberToHexString(Convert, Put Result in)
Convert Number to Mistic I/O Hex String C-49 NumberToMisticIoHex(Convert, Put Result in)
Convert Number to String C-50 NumberToString(Convert, Put Result in)
Convert Number to String Field C-51 NumberToStringField(Convert, Length, Put Result in)
Convert String to Float C-52 StringToFloat(Convert)
Convert String to Integer 32 C-54 StringToInt32(Convert)
Convert String to Integer 64 C-55 StringToInt64(Convert)
Convert String to Lower Case C-56 StringToLowerCase(Convert)
Convert String to Upper Case C-57 StringToUpperCase(Convert)
Find Character in String F-1 FindCharacterInString(Find, Start at Index, Of

String)
Find Substring in String F-2 FindSubstringInString(Find, Start at Index, Of

String)

ioControl Command See pg OptoScript Equivalent (Arguments)
xxviii ioControl Command Reference

Generate Checksum on String G-1 GenerateChecksumOnString(Start Value, On String)
Generate Forward CCITT on String G-3 GenerateForwardCcittOnString(Start Value, On

String)
Generate Forward CRC-16 on String G-4 GenerateForwardCrc16OnString(Start Value, On

String)
Generate Reverse CCITT on String G-7 GenerateReverseCcittOnString(Start Value, On

String)
Generate Reverse CRC-16 on String G-8 GenerateReverseCrc16OnString(Start Value, On

String)
Get Nth Character G-100 GetNthCharacter(From String, Index)
Get String Length G-138 GetStringLength(Of String)
Get Substring G-139 GetSubstring(From String, Start at Index, Num.

Characters, Put Result in)
Move from String Table Element M-10 s = st[0];
Move String M-16 s1 = s2;
Move to String Table Element M-23 st[0] = s;
Move to String Table Elements M-24 MoveToStrTableElements(From, Start Index, End

Index, Of Table)
Set Nth Character S-58 SetNthCharacter(To, In String, At Index)
String Equal? S-103 s1 == s2
String Equal to String Table Element? S-104 s == st[0]
Test Equal Strings T-3 See String Equal?
Verify Checksum on String V-3 VerifyChecksumOnString(Start Value, On String)
Verify Forward CCITT on String V-4 VerifyForwardCcittOnString(Start Value, On String)
Verify Forward CRC-16 on String V-5 VerifyForwardCrc16OnString(Start Value, On String)
Verify Reverse CCITT on String V-6 VerifyReverseCcittOnString(Start Value, On String)
Verify Reverse CRC-16 on String V-7 VerifyReverseCrc16OnString(Start Value, On String)

PI
D—

Et
he

rn
et Get PID Configuration Flags G-112 GetPidConfigFlags(PID Loop)

Get PID Current Input G-113 GetPidCurrentInput(PID Loop)
Get PID Current Setpoint G-114 GetPidCurrentSetpoint(PID Loop)
Get PID Feed Forward G-115 GetPidFeedForward(PID Loop)
Get PID Feed Forward Gain G-116 GetPidFeedForwardGain(PID Loop)
Get PID Forced Output When Input Over

Range
G-117 GetPidForcedOutputWhenInputOverRange(PID Loop)

Get PID Forced Output When Input Under
Range

G-118 GetPidForcedOutputWhenInputUnderRange(PID Loop)

Get PID Gain G-119 GetPidGain(PID Loop)
Get PID Input G-120 GetPidInput(PID Loop)
Get PID Input High Range G-121 GetPidInputHighRange(PID Loop)
Get PID Input Low Range G-122 GetPidInputLowRange(PID Loop)
Get PID Max Output Change G-123 GetPidMaxOutputChange(PID Loop)
Get PID Min Output Change G-124 GetPidMinOutputChange(PID Loop)
Get PID Mode G-125 GetPidMode(PID Loop)
Get PID Output G-126 GetPidOutput(PID Loop)
Get PID Output High Clamp G-127 GetPidOutputHighClamp(PID Loop)
Get PID Output Low Clamp G-128 GetPidOutputLowClamp(PID Loop)
Get PID Scan Time G-129 GetPidScanTime(PID Loop)
Get PID Setpoint G-130 GetPidSetpoint(PID Loop)
Get PID Status Flags G-131 GetPidStatusFlags(PID Loop)
Get PID Tune Derivative G-132 GetPidTuneDerivative(PID Loop)
Get PID Tune Integral G-133 GetPidTuneIntegral(PID Loop)
Set PID Configuration Flags S-59 SetPidConfigFlags(PID Loop, Configuration Flags)
Set PID Feed Forward S-60 SetPidFeedForward(PID Loop, Feed Forward)
Set PID Feed Forward Gain S-61 SetPidFeedForwardGain(PID Loop, Feed Fwd Gain)
Set PID Forced Output When Input Over

Range
S-62 SetPidForcedOutputWhenInputOverRange(PID Loop,

Forced Output)
Set PID Forced Output When Input Under

Range
S-63 SetPidForcedOutputWhenInputUnderRange(PID Loop,

Forced Output)
Set PID Gain S-64 SetPidGain(PID Loop, Gain)
Set PID Input S-65 SetPidInput(PID Loop, Input)
Set PID Input High Range S-66 SetPidInputHighRange(PID Loop, High Range)

ioControl Command See pg OptoScript Equivalent (Arguments)
ioControl Command Reference xxix

Set PID Input Low Range S-67 SetPidInputLowRange(PID Loop, Low Range)
Set PID Max Output Change S-68 SetPidMaxOutputChange(PID Loop, Max Change)
Set PID Min Output Change S-69 SetPidMinOutputChange(PID Loop, Min Change)
Set PID Mode S-70 SetPidMode(PID Loop, Mode)
Set PID Output S-71 SetPidOutput(PID Loop, Output)
Set PID Output High Clamp S-72 SetPidOutputHighClamp(PID Loop, High Clamp)
Set PID Output Low Clamp S-73 SetPidOutputLowClamp(PID Loop, Low Clamp)
Set PID Scan Time S-74 SetPidScanTime(PID Loop, Scan Time)
Set PID Setpoint S-75 SetPidSetpoint(PID Loop, Setpoint)
Set PID Tune Derivative S-76 SetPidTuneDerivative(PID Loop, Derivative)
Set PID Tune Integral S-77 SetPidTuneIntegral(PID Loop, Integral)

Lo
gi

ca
l AND A-7 x and y

AND? A-8 See AND
Bit AND B-1 x bitand y
Bit AND? B-3 See Bit AND
Bit Clear B-4 BitClear(Item, Bit to Clear)
Bit NOT B-5 bitnot x
Bit NOT? B-7 See Bit NOT
Bit Off? B-8 IsBitOff(In, Bit)
Bit On? B-9 IsBitOn(In, Bit)
Bit OR B-10 x bitor y
Bit OR? B-12 See Bit OR
Bit Rotate B-13 BitRotate(Item, Count)
Bit Set B-14 BitSet(Item, Bit to Set)
Bit Shift B-15 x << nBitsToShift
Bit Test B-17 BitTest(Item, Bit to Test)
Bit XOR B-18 x bitxor y
Bit XOR? B-20 See Bit XOR
Equal? E-16 x == y
Equal to Numeric Table Element? E-17 n == nt[0]
Get High Bits of Integer 64 G-62 GetHighBitsOfInt64(High Bits From)
Get Low Bits of Integer 64 G-85 GetLowBitsOfInt64(Integer 64)
Greater? G-146 x > y
Greater Than Numeric Table Element? G-147 x > nt[0]
Greater Than or Equal? G-148 x >= y
Greater Than or Equal to Numeric Table

Element?
G-149 x >= nt[0]

Less? L-1 x < y
Less Than Numeric Table Element? L-2 x < nt[0]
Less Than or Equal? L-3 x <= y
Less Than or Equal to Numeric Table

Element?
L-4 x <= nt[0]

Make Integer 64 M-1 MakeInt64(High Integer, Low Integer)
Move 32 Bits M-7 Move32Bits(From, To)
NOT N-2 not x
NOT? N-3 not x
Not Equal? N-4 x <> y
Not Equal to Numeric Table Element? N-5 n <> nt[0]
Numeric Table Element Bit Clear N-6 NumTableElementBitClear(Element Index, Of Integer

Table, Bit to Clear)
Numeric Table Element Bit Set N-7 NumTableElementBitSet(Element Index, Of Integer

Table, Bit to Set)
Numeric Table Element Bit Test N-8 NumTableElementBitTest(Element Index, Of Integer

Table, Bit to Test)
OR O-6 x or y
OR? O-7 See OR
Set Variable False S-87 SetVariableFalse(Variable)
Set Variable True S-88 SetVariableTrue(Variable)
Test Equal T-2 See Equal?
Test Greater T-4 See Greater?
Test Greater or Equal T-5 See Greater Than or Equal?

ioControl Command See pg OptoScript Equivalent (Arguments)
xxx ioControl Command Reference

Test Less T-6 See Less?
Test Less or Equal T-7 See Less Than or Equal?
Test Not Equal T-8 See Not Equal?
Test Within Limits T-9 See Within Limits?
Variable False? V-1 IsVariableFalse(Variable)
Variable True? V-2 IsVariableTrue(Variable)
Within Limits? W-1 IsWithinLimits(Value, Low Limit, High Limit)
XOR X-1 x xor y
XOR? X-2 See XOR

H
ig

h
De

ns
ity

 D
ig

ita
l Clear HDD Module Off-Latches C-24 ClearHddModuleOffLatches(I/O Unit, Module Number,

Clear Mask)
Clear HDD Module On-Latches C-25 ClearHddModuleOnLatches(I/O Unit, Module Number,

Clear Mask)
Get & Clear All HDD Module Off-Latches G-10 GetClearAllHddModuleOffLatches(I/O Unit, Start

Index, Put Result In)
Get & Clear All HDD Module On-Latches G-12 GetClearAllHddModuleOnLatches(I/O Unit, Start

Index, Put Result In)
Get & Clear HDD Module Counter G-20 GetClearHddModuleCounter(I/O Unit, Module Number,

Point Number, Put Result In)
Get & Clear HDD Module Counters G-21 GetClearHddModuleCounters(I/O Unit, Module Number,

Start Table Index, Put Result In)
Get & Clear HDD Module Off-Latches G-22 GetClearHddModuleOffLatches(I/O Unit, Module

Number, Put Result In)
Get & Clear HDD Module On-Latches G-24 GetClearHddModuleOnLatches(I/O Unit, Module Number,

Put Result In)
Get All HDD Module Off-Latches G-32 GetAllHddModuleOffLatches(I/O Unit, Start Index,

Put Result In)
Get All HDD Module On-Latches G-26 GetAllHddModuleOnLatches(I/O Unit, Start Index, Put

Result In)
Get All HDD Module States G-36 GetAllHddModuleStates(I/O Unit, Start Index, Put

Result In)
Get HDD Module Counters G-57 GetHddModuleCounters(I/O Unit, Module Number, Start

Table Index, Put Result In)
Get HDD Module Off-Latches G-58 GetHddModuleOffLatches(I/O Unit, Module Number, Put

Result In)
Get HDD Module On-Latches G-60 GetHddModuleOnLatches(I/O Unit, Module Number, Put

Result In)
Get HDD Module States G-61 GetHddModuleStates(I/O Unit, Module Number, Put

Result In)
Set HDD Module from MOMO Masks S-23 SetHddModulefromMOMOMasks(I/O Unit, Module Number,

Must-On Mask, Must-Off Mask)
Turn Off HDD Module Point T-26 TurnOffHDDModulePoint(I/O Unit, Module Number,

Point Number)
Turn On HDD Module Point T-28 TurnOnHddModulePoint(I/O Unit, Module Number, Point

Number)

ioControl Command See pg OptoScript Equivalent (Arguments)
ioControl Command Reference xxxi

xxxii ioControl Command Reference

A
 A
Absolute Value
Mathematical Action

Function: To ensure that a value is positive.

Typical Use: To ensure a positive value when the result of a computation may be negative.

Details: Copies Argument 1 to Argument 2, dropping the minus sign if it exists.

Arguments:

Standard
Example:

OptoScript
Example:

AbsoluteValue(Of)
Positive_Value = AbsoluteValue(Negative_Value);

This is a function command; it returns the positive value. The returned value can be consumed by
a variable (as in the example shown) or by a control structure, mathematical expression, etc. See
Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• To change a negative value to a positive value, make Argument 1 and Argument 2 the same.

See Also: Complement (page C-36)

Argument 1
Of
Analog Input
Analog Output
Float Variable
Integer 32 Variable
Integer 64 Variable

Argument 2
Put Result in
Analog Output
Float Variable
Integer 32 Variable
Integer 64 Variable

Absolute Value
Of Negative_Value Float Variable

Put Result in Positive_Value Float Variable
ioControl Command Reference A-1

Accept Incoming Communication
Communication Action

Function: In TCP/IP communication, to establish a connection. (In this case the control engine acts as the
slave, and the communication is opened by the master.)

Typical Use: To accept an incoming communication.

Details: • Applies to communication via TCP communication handles only.
• Always use Listen for Incoming Communication once on each port to start the process

before using this command to complete it. If you don’t use the listen command first, you’ll
receive a -441 (Could not listen on socket) error.

Arguments:

Standard
Example:

OptoScript
Example:

AcceptIncomingCommunication(Communication Handle)
STATUS = AcceptIncomingCommunication(Ultimate_A);

This is a function command; it returns one of the status codes listed below. The returned value
can be consumed by a variable (as in the example shown) or by a control structure, mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Communication Commands” in Chapter 10 of the ioControl User’s Guide.
• It is only necessary to use the Listen for Incoming Communication command once per port,

even if you use the Accept command several times.
• For those familiar with sockets programming, ioControl uses a limited sockets

implementation. To use this command again, create another communication handle and
Accept Incoming Communication on the new handle.

• The session may be closed by the master. To determine whether the session is still open, use
the commands Get Number of Characters Waiting, Communication Open? or Receive String.
(Get Number of Characters Waiting is the best method.)

Status Codes: 0 = Success
-10 = Invalid port number. Check format of serial port in the communication handle string.
-36 = Invalid command. Use this command only with a TCP communication handle; for other
communication handles, use Open Outgoing Communication instead.
-47 = Open failed. Handle has already been opened.
-203 = Unknown driver on communication handle.
-441 = Could not listen on socket.

Argument 1
Communication Handle
Communication Handle

Argument 2
Put Result In
Float Variable
Integer 32 Variable

Accept Incoming Communication
Communication Handle Ultimate_A Communication Handle

Put Result In STATUS Integer 32 Variable
A-2 ioControl Command Reference

A

-442 = Could not accept on socket. No devices are currently attempting to connect on this port.

See Also: Listen for Incoming Communication (page L-5), Get Number of Characters Waiting (page G-101),
Receive String (page R-19), Open Outgoing Communication (page O-4), Communication Open?
(page C-32)

Add
Mathematical Action

Function: To add two numeric values.

Typical Use: To add two numbers to get a third number, or to add one number to a running total.

Details: • The standard ioControl command adds Argument 1 and Argument 2 and places the result in
Argument 3. Argument 3 can be the same as either of the first two arguments (unless they
are read-only, such as analog inputs), or it can be a completely different argument.

• Accommodates different item types such as float, integer, and analog without restriction.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the + operator.
Total_Weight = Ingredient_1_Weight + Ingredient_2_Weight;

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• In OptoScript code, the + operator has many uses. For more information on mathematical

expressions in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

Queue Errors: -13 = Overflow error—result too large.

See Also: Increment Variable (page I-1), Subtract (page S-105)

Argument 1
[Value]
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
Plus
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result In
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable
ioControl Command Reference A-3

Add Message to Queue
Error Handling Action

Function: To place your own message into the message queue.

Typical Use: To add diagnostic or debugging messages to the queue.

Details: • Valid severity values are:

4 = Info
8 = Warning
16 = Error

• The queue holds a total of 1000 errors and messages.
• Quotes (“”) are used in OptoScript code, but not in standard ioControl code.

Arguments:

Standard
Example:

This example shows the string in quotes for clarity only; do not use quotes in standard
commands.

OptoScript
Example:

AddMessageToQueue(Severity, Message)
AddMessageToQueue(16, "Pressure Tank Exploded");

This is a procedure command; it does not return a value.

Queue Error: -83 = Invalid severity value

See Also: Add User Error to Queue (page A-5)

Argument 1
Severity
Integer 32 Literal
Integer 32 Variable

Argument 2
Message
String Literal
String Variable

Add Message to Queue
Severity 16 Integer 32 Literal
Message "Pressure Tank Exploded" String Literal
A-4 ioControl Command Reference

A

Add User Error to Queue
Error Handling Action

Function: Enables the user to force a program error into the message queue.

Typical Use: Simulating errors offline to test a user-written error handler.

Details: • Adds a user-defined error number to the message queue. Any number from -22001 to -23000
may be used for this purpose.

• The queue holds a total of 1000 errors and messages.

Arguments:

Standard
Example:

OptoScript
Example:

AddUserErrorToQueue(Error Number)
AddUserErrorToQueue(-22001);

This is a procedure command; it does not return a value.

Notes: Also see Add Message to Queue, which is more flexible.

See Also: Add Message to Queue (page A-4), Add User I/O Unit Error to Queue (page A-6), Get Error Code
of Current Error (page G-52)

Argument 1
Error Number
Integer 32 Literal
Integer 32 Variable

Add User Error to Queue
Error Number -22001 Integer 32 Literal
ioControl Command Reference A-5

Add User I/O Unit Error to Queue
Error Handling Action

Function: Enables the user to force an I/O unit error into the message queue.

Typical Use: Simulating I/O unit errors offline to test a user-written error handler.

Details: • Adds a standard predefined I/O unit error number to the message queue.
• The queue holds a total of 1000 errors and messages.

Arguments:

Standard
Example:

OptoScript
Example:

AddUserIoUnitErrorToQueue(Error Number, I/O Unit)
AddUserIoUnitErrorToQueue(-52, My_UIO);

This is a procedure command; it does not return a value.

Notes: See the Error Codes appendix in the ioControl User’s Guide for a complete list.

See Also: Add User Error to Queue (page A-5), Get Error Code of Current Error (page G-52)

Argument 1
Error Number
Integer 32 Literal
Integer 32 Variable

Argument 2
I/O Unit
B100*
B200*
B3000 (Analog)*
B3000 (Digital)*
G4A8R, G4RAX*
G4D16R*
G4D32RS*
SNAP-ENET-D64*
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2
SNAP-BRS*

* ioControl Professional only

Add User I/O Unit Error to Queue
Error Number -52 Integer 32 Literal

I/O Unit My_UIO SNAP-UP1-ADS
A-6 ioControl Command Reference

A

AND
Logical Action

Function: To perform a logical AND on any two allowable values.

Typical Use: To determine if each of a pair of values is non-zero (True).

Details: • The standard ioControl command performs a logical AND on Argument 1 and Argument 2
and puts result in Argument 3. Examples:

• The result is True (non-zero) if both values are non-zero, False (0) otherwise.
• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the and operator.
Both_Switches_Closed = Limit_Switch1 and Limit_Switch2;

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. The example shown is
only one of many ways to use the and operator. For more information on logical operators
in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• It is advisable to use only integers or digital points with this command.
• In OptoScript code, you can combine logical operators and AND multiple variables, for

example: x = a and b and c and d;
• In standard ioControl code, to AND multiple variables (such as A, B, C, and D) into one

variable (such as ANSWER), do the following:
1. AND A with B, Put Result in ANSWER.
2. AND C with ANSWER, Put Result in ANSWER.
3. AND D with ANSWER, Put Result in ANSWER.

• To test for individual bits, use Bit Test or Bit AND.

See Also: Bit Test (page B-17), Bit AND (page B-1), AND? (page A-8)

Argument 1 Argument 2 Argument 3
0 0 0
1 0 0
0 1 0
1 1 1

Argument 1
[Value]
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
With
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Integer 64 Variable

AND
Limit_Switch1 Digital Input

With Limit_Switch2 Digital Input
Put Result in Both_Switches_Closed Integer Variable
ioControl Command Reference A-7

AND?
Logical Condition

Function: To perform a logical AND? on any two allowable values.

Typical Use: Used in place of calling Variable True? twice.

Details: • Performs a logical AND? on Argument 1 and Argument 2. Examples:

• Evaluates True (non-zero) if both values are non-zero, False (0) otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the and operator.
if (Limit_Switch1 and Limit_Switch2) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. The example shown is
only one of many ways to use the and operator. For more information on logical operators
in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• It is advisable to use only integers or digital points with this command.
• In OptoScript code, you can combine logical operators and AND multiple variables, for

example: if (a and b and c and d) then
• In standard ioControl code, multiple values can be AND?ed by repeating this condition or the

Variable True? condition several times in the same block.
• Use Bit AND? if the objective is to test for individual bits.
• Executes faster than using Variable True? twice.

See Also: Bit AND? (page B-3) Variable True? (page V-2) Variable False? (page V-1)

Argument 1 Argument 2 Result
0 0 0
1 0 0
0 1 0
1 1 1

Argument 1
Is
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
[Value]
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Is Limit_Switch1 Digital Input
AND?

Limit_Switch2 Digital Input
A-8 ioControl Command Reference

A

Append Character to String
String Action

Function: To add a character to the end of a string variable.

Typical Use: To build strings consisting of non-printable or binary characters.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• The character is represented by an ASCII value. (See the ASCII table in Chapter 10 of the

ioControl User’s Guide.) A space is a character 32 and a “1” is a character 49.
• Appending a value of zero is legal and will append a null byte.
• If the appended value is greater than 255 (hex FF) or less than 0, the value will be truncated

to eight bits; for example, -2 becomes hex FE and 257 (hex 101) becomes 1.
• Floats (if used) are automatically rounded to integers before conversion.
• If the string cannot hold any more characters, the character will not be appended.

Arguments:

Standard
Example:

The following example appends a “!” to a string (for example, “Hello” would become “Hello!”):

The following example appends an ETX (character 3) to a string. An ETX or some other
terminating character may be required when sending commands to serial devices, such as
barcode printers, scales, or single-loop controllers.

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the += operator and the Chr
keyword. The OptoScript code for the first example above could be either of the following lines:
Hello_String += Chr(33);

Hello_String += Chr('!');

The OptoScript code for the second example would be:
Command_String += Chr(3);

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide. For more
information on using strings in OptoScript code, see Chapter 11 of the ioControl User’s
Guide.

• To clear a string, use Move String before using this command. Moving an empty
string (“”) to a string variable will clear it.

Argument 1
Append
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
To
String Variable

Append Character to String
Append 33 Integer 32 Literal

To Hello_String String Variable

Append Character to String
Append 3 Integer 32 Literal

To Command_String String Variable
ioControl Command Reference A-9

Dependencies: The string variable must be wide enough to hold one more character.

See Also: Append String to String (page A-10)

Append String to String
String Action

Function: To add a string to the end of another string variable.

Typical Use: To build strings.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• If the string variable cannot hold all of the appended string, the remaining portion of the

string to be appended will be discarded.
• Single characters can be appended (yielding the same result as an Append Character to

String). For example, to append a “space,” use the space bar rather than the number 32.

Arguments:

Standard
Example:

The following example appends the string “ world” to a string. For example, “Hello” would
become “Hello world” (note the space before the “w” in “ world”). Quotes are shown here for
clarity only; do not use them in the standard command.

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the += operator. Quotes are
required in OptoScript code.
Hello_String += " world";

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• For more information on using strings in OptoScript code, see Chapter 11 of the ioControl

User’s Guide. For example, in OptoScript, you can append several strings at once, as shown:
string1 = string2 + string3 + string4;

• To clear a string, use Move String before using this command. Moving an empty string (“”) to
a string variable will clear it.

Dependencies: The string variable must be wide enough to hold the appended string.

See Also: Append Character to String (page A-9)

Argument 1
Append
String Literal
String Variable

Argument 2
To
String Variable

Append String to String
Append “ world” String Literal

To Hello_String String Variable
A-10 ioControl Command Reference

A

Arccosine
Mathematical Action

Function: To derive the angular value from a cosine value.

Typical Use: To solve trigonometric calculations.

Details: • Calculates the arccosine of Argument 1 and places the result in Argument 2.
• Argument 1 (the operand) must be a cosine value with a range of –1.0 to 1.0.
• The angular value returned is in radians with a range of 0 to pi.

(To convert radians to degrees, multiply by 180/pi.)

Arguments:

Standard
Example:

OptoScript
Example:

Arccosine(Of)
RADIANS = Arccosine(X);

This is a function command, it returns the angular value. The returned value can be consumed by
a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• Use Cosine if the angle is known and the cosine is desired.

Queue Errors: -13 = Overflow error—result too large.
-14 = Not a number—result invalid.

See Also: Cosine (page C-62), Arcsine (page A-12), Arctangent (page A-13)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable

Arccosine
Of X Float Variable

Put Result in RADIANS Float Variable
ioControl Command Reference A-11

Arcsine
Mathematical Action

Function: To derive the angular value from a sine value.

Typical Use: To solve trigonometric calculations.

Details: • Calculates the arcsine of Argument 1 and places the result in Argument 2.
• Argument 1 (the operand) must be a sine value with a range of –1.0 to 1.0.
• The angular value returned is in radians with a range of –pi/2 to pi/2. (To convert radians to

degrees, multiply by 180/pi.)

Arguments:

Standard
Example:

OptoScript
Example:

Arcsine(Of)
RADIANS = Arcsine(X);

This is a function command, it returns the angular value. The returned value can be consumed by
a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• Use Sine if the angle is known and the sine is desired.

Queue Errors: -13 = Overflow error—result too large.
-14 = Not a number—result invalid.

See Also: Sine (page S-91), Arccosine (page A-11), Arctangent (page A-13)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable

Arcsine
Of X Float Variable

Put Result in RADIANS Float Variable
A-12 ioControl Command Reference

A

Arctangent
Mathematical Action

Function: To derive the angular value from a tangent value.

Typical Use: To solve trigonometric calculations.

Details: • Calculates the arctangent of Argument 1 and places the result in Argument 2.
• Argument 1 (the operand) must be a tangent value.
• The angular value returned is in radians with a range of –pi/2 to pi/2.

(To convert radians to degrees, multiply by 180/pi.)

Arguments:

Standard
Example:

OptoScript
Example:

Arctangent(Of)
RADIANS = Arctangent(X);

This is a function command, it returns the angular value. The returned value can be consumed by
a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• Use Tangent if the angle is known and the tangent is desired.

Queue Errors: -13 = Overflow error—result too large.
-14 = Not a number—result invalid.

See Also: Arccosine (page A-11), Arcsine (page A-12), Tangent (page T-1)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable

Arctangent
Of X Float Variable

Put Result in RADIANS Float Variable
ioControl Command Reference A-13

A-14 ioControl Command Reference

B
 B
Bit AND
Logical Action

Function: To perform a bitwise AND on any two allowable values.

Typical Use: To clear one or more bits as specified by a mask (zero bits will clear).

Details: • Performs a bitwise AND on Argument 1 and Argument 2 and puts result in Argument 3. One
value is the mask for selecting specific bits in the other value. Examples:

• Acts on all bits.

Arguments:

Standard
Example:

This example copies the four least significant bits from VALUE to RESULT and sets all remaining
bits in RESULT to zero.

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitand operator.
RESULT = VALUE bitand 15;

Note that for this command, I/O units cannot be used the same way as in the standard command.
However, you can accomplish the same thing using OptoScript code. The following example ands
the bits from two variables and writes the inverted result to an I/O unit:
SetDigital64IoUnitFromMomo(nnTemp1 bitand nnTemp2,
bitnot (nnTemp1 bitand nnTemp2),
Dig_IO_Unit);

This example moves a value from an I/O unit, ands the bits with a variable, and writes the
inverted result to the same I/O unit:

Argument 1 Argument 2 Argument 3
0 0 0
8 0 0
0 8 0
8 8 8

Argument 1
[Value]
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Argument 2
With
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Argument 3
Put Result in
Digital Output
Integer 32 Variable
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Bit AND
VALUE Integer 32 Variable

With 15 Integer 32 Literal
Put Result in RESULT Integer 32 Variable
ioControl Command Reference B-1

nnTemp1 = GetIoUnitAsBinaryValue(Dig_IO_Unit);

nnTemp1 = nnTemp1 bitand nnVariable;

SetDigital64IoUnitFromMomo(nnTemp1, bitnot nnTemp1, Dig_IO_Unit);

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. For more information
on logical operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• To clear bits in Argument 1, set a zero for each bit to clear in the mask (all remaining bits
must be 1), and make Argument 1 and Argument 3 the same.

• You may prefer to set a 1 for each bit to clear in the mask, then use Bit NOT to invert all bits.
• Use 255 as the mask to keep the lower eight bits.
• To clear only one bit, use Bit Clear.
• To test for non-zero values, use AND.

See Also: Bit Clear (page B-4), Bit NOT (page B-5), AND (page A-7), AND? (page A-8) Bit AND? (page B-3)
B-2 ioControl Command Reference

B

Bit AND?
Logical Condition

Function: To perform a bitwise AND? on any two allowable values.

Typical Use: To determine if the individual bits of one value match the on bits of a mask value.

Details: • Performs a bitwise AND? on Argument 1 and Argument 2. Examples:

• Evaluates True if any bit set to 1 in the mask (Argument 2) is also set to 1 in Argument 1,
False otherwise.

• Acts on all bits.

Arguments:

Standard
Example:

This example reads the current state of all points on a digital I/O unit and Bit AND?s the value
with the constant 33,280 (1000 0010 0000 0000 binary). Evaluates True if either point 15 or 9 is
on, False if both points are off.

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitand operator. Note that
for this command, I/O units cannot be used the same way as in the standard command. However,
you can accomplish the same thing using OptoScript code. In this example, the value of DIG_1
has been moved to a variable so it can be anded:
if (GetIoUnitAsBinaryValue(DIG_1) bitand 33280i64) then

The following is a simpler example; it ands the bits from two variables:
if (nVariable1 bitand nVariable2) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. For more information
on logical operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• Use 255 as the constant to check the lower eight points.

See Also: AND? (page A-8) Bit OR? (page B-12)

Argument 1 Argument 2 Result
0 0 False
1 0 False
0 1 False
1 1 True

Argument 1
Is
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Argument 2
[Value]
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Is DIG_1 SNAP-UP1-D64
Bit AND?

33280 Integer 32 Literal
ioControl Command Reference B-3

Bit Clear
Logical Action

Function: To clear a specified bit (set it to zero) in an allowable value.

Typical Use: To clear one bit of a particular integer variable.

Details: • Performs this action on a copy of Argument 1, then moves the copy to Argument 3.
• For integer 32 variables, the valid range for the bit to clear is 0–31. For SNAP digital 64 I/O

units and integer 64 variables, the valid range is 0–63.
• Note that the types for Argument 2 are 32-bit integers, because an integer 32 provides

enough range to handle either a 32- or a 64-bit shift.

Arguments:

Standard
Example:

This example does a binary read of the I/O unit IO_UNIT_1, clears bit 0, and does a binary write
of the data back out to IO_UNIT_1. This will cause point 0 of the I/O unit to be turned off. If point
0 happens to be an input, nothing will happen.

OptoScript
Example:

BitClear(Item, Bit to Clear)
nBitCleared = BitClear(IO_UNIT_1, 0);

This is a function command; it returns the value with the specified bit cleared. This example is
different from the standard example, because in OptoScript the returned value cannot be an I/O
unit.
To turn off a point as in the standard example, you could use the following OptoScript code:
SetDigital64IoUnitFromMomo(0, 1i64 << nPointToClear, IO_Unit_1);

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• Although this command can be used to turn off digital points, it is primarily used to

manipulate bits in an integer variable. These bits can be used as flags to carry information
such as status, control, or fault (real-time or latch).

• To clear bits in Argument 1, make Argument 1 and Argument 3 the same.
• To clear several bits at once, use Bit AND.

See Also: Bit AND (page B-1), Bit Test (page B-17), Bit Set (page B-14)

Argument 1
[Value]
Integer 32 Variable
Integer 64 Variable
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64

Argument 2
Bit to Clear
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
Integer 32 Variable
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Bit Clear
IO_UNIT_1 SNAP-UP1-D64

Bit to Clear 0 Integer 64 Literal
Put Result in IO_UNIT_1 SNAP-UP1-D64
B-4 ioControl Command Reference

B

Bit NOT
Logical Action

Function: To invert all 32 or 64 bits of a value.

Typical Use: To invert bits.

Details: • Inverts Argument 1 and puts result in Argument 2. Examples:

• Performs this action on a copy of Argument 1, then moves the copy to Argument 2.
• Acts on all bits.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitnot operator.
DATA = bitnot DATA;

Note that for this command, I/O units cannot be used the same way as in the standard command.
However, you can accomplish the same thing using OptoScript code. This example moves a value
from an I/O unit, bitnots the value, and writes the result to the same I/O unit:
nnTemp1 = GetIoUnitAsBinaryValue(Dig_IO_Unit);

SetDigital64IoUnitFromMomo(bitnot nnTemp1, nnTemp1, Dig_IO_Unit);

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. For more information
on logical operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• To invert all bits in Argument 1, make both Arguments the same.

Argument 1 Argument 2
0 -1

-1 or 1 0

Argument 1
[Value]
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Argument 2
Put Result in
Digital Output
Integer 32 Variable
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Bit NOT
DATA Integer 32 Variable

Put Result in DATA Integer 32 Variable
ioControl Command Reference B-5

• To clear one or more specific bits, use this command to invert a mask set with the bits to be
cleared. Then, Bit AND the mask with the value to clear those bits. For example, suppose
you want to clear bits 0, 1, and 2.

• To toggle True/False, use NOT.

See Also: NOT (page N-2), Bit XOR (page B-18), XOR (page X-1), Bit Set (page B-14), Bit NOT? (page B-7)

Create a mask with those bits set 0000 0111

Do a bitnot on the mask, giving: 1111 1000

Bit AND this value with the value to be cleared: 0110 1001

Those bits are cleared: 0110 1000
B-6 ioControl Command Reference

B

Bit NOT?
Logical Condition

Function: To invert all 32 or 64 bits of an allowable value and determine if the result is True or False.

Typical Use: To determine if any bit is off.

Details: • Inverts Argument 1 and evaluates whether the result is True or False. Examples:

• Evaluates True if any bit is set to 0, False otherwise.
• Acts on all bits.

Arguments:

Standard
Example:

This example reads the state of all points of the specified digital I/O unit and then inverts them.
Evaluates True if any point is off, False otherwise.

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitnot operator. Note that for
this command, I/O units cannot be used the same way as in the standard command. However,
you can accomplish the same thing using OptoScript code. In this example, the value of DIG_1 is
moved to a variable so the bitnot operator can be used:
nnTemp1 = GetIoUnitAsBinaryValue(DIG_1);

if (bitnot nnTemp1) then

The following is a simpler example; it bitnots a variable:
if (bitnot nVariable2) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. For more information
on logical operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• Use NOT if the objective is to toggle the value between True and False.

See Also: Bit On? (page B-9) Bit Off? (page B-8)

Argument 1 Result
0 True
1 False

Argument 1
Is
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Is DIG_1 SNAP-UP1-D64
Bit NOT?
ioControl Command Reference B-7

Bit Off?
Logical Condition

Function: To test the False status of a specific bit in an allowable value.

Typical Use: To test a bit used as a flag in an integer variable.

Details: • Evaluates True if the bit in Argument 1 specified by Argument 2 is set to 0. Evaluates False if
the bit is set to 1.

• Note that the types for Argument 2 are 32-bit integers, because the top of the valid range, a
value of 63, requires only 6 bits.

Arguments:

Standard
Example:

This example evaluates to True if point 15 of I/O UNIT 1 is off, False otherwise.

OptoScript
Example:

IsBitOff(In, Bit)
if (IsBitOff(IO_UNIT_1, 15)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information on OptoScript.

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• Although this command can be used to determine the status of digital points, it is primarily

used to test bits in an integer variable. These bits can be used as flags to carry information
such as status, control, or fault (real-time or latch).

• Use Bit AND? if the objective is to test several bits at once.

See Also: Bit On? (page B-9) Bit AND? (page B-3) Bit Test (page B-17)

Argument 1
In
Integer 32 Variable
Integer 64 Variable
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64

Argument 2
Bit
Integer 32 Literal
Integer 32 Variable

In IO_UNIT_1 SNAP-ENET-D64
Bit Off?

Bit 15 Integer 32 Literal
B-8 ioControl Command Reference

B

Bit On?
Logical Condition

Function: To test the True status of a specific bit in an allowable value.

Typical Use: To test a bit used as a flag in an integer variable.

Details: • Evaluates True if the bit specified in Argument 2 is set to 1 in Argument 1. Evaluates False if
the bit is set to 0.

• Note that the types for Argument 2 are 32-bit integers, because the top of the valid range, a
value of 63, requires only 6 bits.

Arguments:

Standard
Example:

This example evaluates to True if point 0 of I/O UNIT 1 is on, False otherwise.

OptoScript
Example:

IsBitOn(In, Bit)
if (IsBitOn(IO_UNIT_1, 0)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information on OptoScript.

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• Although this command can be used to determine the status of digital points, it is primarily

used to test bits in an integer variable. These bits can be used as flags to carry information
such as status, control, or fault (real-time or latch).

• Use Bit AND? if the objective is to test several bits at once.

See Also: Bit Off? (page B-8) Bit AND? (page B-3) Bit Test (page B-17)

Argument 1
In
Integer 32 Variable
Integer 64 Variable
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64

Argument 2
Bit
Integer 32 Literal
Integer 32 Variable

In IO_UNIT_1 SNAP-ENET-D64
Bit On?

Bit 0 Integer 32 Literal
ioControl Command Reference B-9

Bit OR
Logical Action

Function: To perform a bitwise OR on two values.

Typical Use: To set one or more bits as specified by a mask.

Details: • Performs a bitwise OR on Argument 1 and Argument 2 and puts result in Argument 3.
Examples:

• Combines all bits set to 1 in Argument 1 and Argument 2. The result (Argument 3) can be put
into either of the first two items or into a different item.

• Acts on all bits.

Arguments:

Standard
Example:

This example sets bit 2 in a copy of Argument 1 and puts the result in Argument 3.

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitor operator.
RESULT = VALUE bitor 4;

Note that for this command, I/O units cannot be used the same way as in the standard command.
However, you can accomplish the same thing using OptoScript code. The following example ors
the bits from two variables and writes the result to an I/O unit:
SetDigital64IoUnitFromMomo(nnTemp1 bitor nnTemp2,
bitnot (nnTemp1 bitor nnTemp2),
Dig_IO_Unit);

This example moves a value from an I/O unit, ors the bits with a variable, and writes to the
same I/O unit:
nnTemp1 = GetIoUnitAsBinaryValue(Dig_IO_Unit);

nnTemp1 = nnTemp1 bitor nVariable;

Argument 1 Argument 2 Argument 3
0 0 0

0xF 0 0xF
0 0xF 0xF

0xF 0xF 0xF

Argument 1
[Value]
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Argument 2
With
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Argument 3
Put Result in
Digital Output
Integer 32 Variable
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Bit OR
VALUE Integer 32 Variable

With 4 Integer 32 Literal
Put Result in RESULT Integer 32 Variable
B-10 ioControl Command Reference

B

SetDigital64IoUnitFromMomo(nnTemp1, bitnot nnTemp1, Dig_IO_Unit);

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. For more information
on logical operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• Although this command can be used to turn on digital points, it is used primarily to
manipulate bits in an integer variable. These bits can be used as flags to carry information
such as status, control, or fault (real-time or latch).

• To set bits in Argument 1, make Argument 1 and Argument 3 the same.
• To set only one bit, use Bit Set.
• To test if either of two values is True, use OR.

See Also: Bit Set (page B-14), OR (page O-6), Bit XOR (page B-18), XOR (page X-1)
ioControl Command Reference B-11

Bit OR?
Logical Condition

Function: To perform a bitwise OR? on any two allowable values.

Typical Use: To determine if any bit is set to 1 in either of two values.

Details: Performs a bitwise OR? on Argument 1 and Argument 2. Examples:

• Evaluates to True if any bit is set to 1 in either of the two allowable values, False otherwise.
• Acts on all bits.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitor operator.
if (Fault_Bits_1 bitor Fault_Bits_2) then

Note that for this command, I/O units cannot be used the same way as in the standard command.
However, you can accomplish the same thing using OptoScript code.
if (GetIoUnitAsBinaryValue(Dig_IO_Unit) bitor nInteger) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. For more information
on logical operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• Although this condition can be used to determine the status of digital points, it is primarily
used to test bits in an integer variable. These bits can be used as flags to carry information
such as status, control, or fault (real-time or latch).

• Use Bit On? or Bit Off? if the objective is to test only one bit.

See Also: Bit On? (page B-9) Bit Off? (page B-8) OR? (page O-7)

Argument 1 Argument 2 Results
0 0 False
1 0 True
0 1 True
1 1 True

Argument 1
Is
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Argument 2
[Value]
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Is Fault_Bits_1 Integer 32 Variable
Bit Or?

Fault_Bits_2 Integer 32 Variable
B-12 ioControl Command Reference

B

Bit Rotate
Logical Action

Function: To rotate all 32 or 64 bits of an allowable value to the left or right.

Typical Use: To shift bits left or right with wraparound.

Details: • Acts on all bits. All bits rotated past one end reappear at the other end. If Argument 2 is
positive, bits rotate left. If it is negative, bits rotate right. If it is zero, no rotation occurs.

• Note that the types for Argument 2 are 32-bit integers, because an integer 32 provides
enough range to handle either a 32- or a 64-bit shift.

Arguments:

Standard
Example:

This example shows the bits of a copy of Mask_Variable rotated to the left by 4, with the result
placed in Result_Variable. If Mask_Variable is -2,147,483,904 (10000000 00000000 00000000
00000000 binary), then after the rotation Result_Variable would be 8 (00000000 00000000
00000000 00001000 binary).

OptoScript
Example:

BitRotate(Item, Count)
Result_Variable = BitRotate(Mask_Variable, 4);

This is a function command; it returns the result of the bit rotation. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. In OptoScript code it cannot be consumed by an I/O unit, however. See Chapter
11 of the ioControl User’s Guide for more information on OptoScript.
Although the returned value cannot be consumed by an I/O unit, you can accomplish the same
thing by using OptoScript code such as the following:
nnTemp1 = BitRotate(Dig_IO_Unit, nCount);

SetDigital64IoUnitFromMomo(nnTemp1, bitnot nnTemp1, Dig_IO_Unit);

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• To rotate bits in Argument 1, make Argument 1 and Argument 3 the same.
• To get rid of all bits that move past either end, use Bit Shift.

See Also: Bit Shift (page B-15)

Argument 1
[Value]
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64

Argument 2
Count
Integer 32 Literal
Integer 32 Variable

Argument 3
Move To
Digital Output
Integer 32 Variable
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Bit Rotate
Mask_Variable Integer 32 Variable

Count 4 Integer 32 Literal
Move To Result_Variable Integer 32 Variable
ioControl Command Reference B-13

Bit Set
Logical Action

Function: To set a specified bit (set it to 1) in an allowable value.

Typical Use: To set a bit in an integer variable.

Details: • Performs this action on a copy of Argument 1, then moves the copy to Argument 3.
• Note that the types for Argument 2 are 32-bit integers, because an integer 32 provides

enough range to handle either a 32- or a 64-bit shift.

Arguments:

Standard
Example:

If Pump3_Ctrl_Bits is 8 (00000000 00000000 00000000 00001000 binary), then after the Bit Set,
Pump3_Ctrl_Bits would be 32776 (00000000 00000000 10000000 00001000 binary).

OptoScript
Example:

BitSet(Item, Bit to Set)
Pump3_Ctrl_Bits = BitSet(Pump3_Ctrl_Bits, 15);

This is a function command; it returns the value with the specified bit set. The returned value can
be consumed by a variable (as shown) or by another item, such as a control structure. It cannot
be consumed by an I/O unit, however. See Chapter 11 of the ioControl User’s Guide for more
information on OptoScript.
Although the returned value cannot be consumed by an I/O unit, you can accomplish the
same thing by using OptoScript code such as the following:
SetDigital64IoUnitFromMomo(1i64 << nPointToSet, 0, Dig_IO_Unit);

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• Although this command can be used to turn on digital points, it is primarily used to

manipulate bits in an integer variable. These bits can be used as flags to carry information
such as status, control, or fault (real-time or latch).

• To set bits in Argument 1, make Argument 1 and Argument 3 the same.
• To set several bits at once, use Bit OR.

See Also: Bit OR (page B-10), Bit Test (page B-17), Bit Clear (page B-4)

Argument 1
[Value]
Integer 32 Variable
Integer 64 Variable
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64

Argument 2
Bit to Set
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
Integer 32 Variable
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Bit Set
Pump3_Ctrl_Bits Integer 32 Variable

Bit to Set 15 Integer 32 Literal
Put Result in Pump3_Ctrl_Bits Integer 32 Variable
B-14 ioControl Command Reference

B

Bit Shift
Logical Action

Function: To shift the bits of a value to the right or left.

Typical Use: To evaluate the four bytes of a 32-bit integer or the eight bytes of a 64-bit integer one at a time.
A way to multiply or divide integers by a base 2 number.

Details: • Functionally equivalent to integer multiplication or division by powers of two. Bit Shift with
a Count of 2 is the same as multiplying by 4. Bit Shift with a Count of -3 is the same as
dividing by 8.

• In the standard ioControl command, if Argument 2 is positive, bits will shift left. If it is
negative, bits will shift right. If it is zero, no shifting will occur.

• Acts on all bits. All bit positions vacated by the shift are filled with zeros.
• Note that the types for Argument 2 are 32-bit integers, because an integer 32 provides

enough range to handle either a 32- or a 64-bit shift.

Arguments:

Standard
Example:

This example shows the bits of a copy of Mask_Variable shifted to the right by 8, with the
result placed in Result_Variable.
If Mask_Variable is -2,147,483,648 (10000000 00000000 00000000 00000000 binary), then after
the shift Result_Variable would be 8,388,608 (00000000 10000000 00000000 00000000 binary).

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the << (left shift) or >> (right
shift) operators. Note that the result of the bit shift cannot be put into an I/O unit.
Result_Variable = Mask_Variable >> 8;

Although the result of the bit shift cannot be put into an I/O unit, you can accomplish the
same thing by using OptoScript code. The following example shifts bits in a variable and writes
the result to an I/O unit:
nnTemp1 = nnTemp1 >> 8;

Argument 1
[Value]
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Argument 2
Count
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
Digital Output
Integer 32 Variable
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Bit Shift
Mask_Variable Integer 32 Variable

Count -8 Integer 32 Literal
Put Result in Result_Variable Integer 32 Variable
ioControl Command Reference B-15

SetDigital64IoUnitFromMomo(nnTemp1, bitnot nnTemp1, Dig_IO_Unit);

This example moves a value from an I/O unit, shifts bits, and writes to the same I/O unit:
nnTemp1 = GetIoUnitAsBinaryValue(Dig_IO_Unit);

nnTemp1 = nnTemp1 >> 8;

SetDigital64IoUnitFromMomo(nnTemp1, bitnot nnTemp1, Dig_IO_Unit);

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. For more information
on logical operators such as >> and << in OptoScript code, see Chapter 11 of the ioControl
User’s Guide.

• To shift bits in Argument 1, make Argument 1 and Argument 3 the same.
• To retain all bits that move past either end, use Bit Rotate.

See Also: Bit Rotate (page B-13)
B-16 ioControl Command Reference

B

Bit Test
Logical Action

Function: To determine the status of a specific bit.

Typical Use: To test a flag bit in an integer variable.

Details: • Note that the types for Argument 2 are 32-bit integers, because the top of the valid range, a
value of 63, requires only 6 bits.

• If the bit is clear (0), False (0) is moved to Argument 3.
• If the bit is set (1), True (non-zero) is moved to Argument 3.
• The result can also be sent directly to a digital output.

Arguments:

Standard
Example:

If Pump3_Ctrl_Bits is 00000000 00000000 10000000 00001000, the result would be set to True.

OptoScript
Example:

BitTest(Item, Bit to Test)
Pump3_Ctrl_Bits = BitTest(Pump3_Ctrl_Bits, 15);

This is a function command; it returns a value of False (0, bit is clear) or True (non-zero, bit is set).
The returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide for
more information on OptoScript.

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• Although this command can be used to determine the status of digital points, it is primarily

used to test bits in an integer variable. These bits can be used as flags to carry information
such as status, control, or fault (real-time or latch).

• To test several bits at once, use Bit AND.

See Also: Bit Clear (page B-4), Bit Set (page B-14), Bit On? (page B-9)

Argument 1
[Value]
Integer 32 Variable
Integer 64 Variable
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64

Argument 2
Bit to Test
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
Digital Output
Integer 32 Variable

Bit Test
Pump3_Ctrl_Bits Integer 32 Variable

Bit to Test 15 Integer 32 Literal
Put Result in Pump3_Ctrl_Bits Integer 32 Variable
ioControl Command Reference B-17

Bit XOR
Logical Action

Function: To perform a bitwise EXCLUSIVE OR on any two allowable values.

Typical Uses: • To toggle one or more bits as specified by a mask.
• To toggle an integer between zero and any other value.

Details: • Performs a bitwise EXCLUSIVE OR on Argument 1 and Argument 2 and puts the result in
Argument 3. Examples:

• Acts on all bits. One value is the mask for selecting specific bits in the other value.

Arguments:

Standard
Example:

This example performs a Bit XOR on a copy of Data with the constant 22 (binary 10110). The
result (Data_New) has bits 1, 2, and 4 inverted. If Data = 0, Data_New = 22. If Data = 22,
Data_New = 0.

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitxor operator.
Data_New = Data bitxor 22;

Note that for this command, I/O units cannot be used the same way as in the standard command.
However, you can accomplish the same thing using OptoScript code. The following example xors
the bits from two variables and writes the result to an I/O unit:
SetDigital64IoUnitFromMomo(nnTemp1 bitxor nnTemp2,
bitnot(nnTemp1 bitxor nnTemp2),
Dig_IO_Unit);

Argument 1 Argument 2 Argument 3
0 0 0
0 1 1
1 0 1
1 1 0

Argument 1
[Value]
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Argument 2
With
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Argument 3
Put Result in
Digital Output
Integer 32 Variable
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Bit XOR
Data Integer 32 Variable

With 22 Integer 32 Literal
Put Result in Data_New Integer 32 Variable
B-18 ioControl Command Reference

B

This example moves a value from an I/O unit, xors the bits with a variable, and writes to the same
I/O unit:
nnTemp1 = GetIoUnitAsBinaryValue(Dig_IO_Unit);

nnTemp1 = nnTemp1 bitxor nnVariable;

SetDigital64IoUnitFromMomo(nnTemp1, bitnot nnTemp1, Dig_IO_Unit);

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. For more information
on logical operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• This command can be used to toggle digital outputs as well as bits in an integer variable.
These bits can be used as flags to carry information such as status, control, or fault
(real-time or latch).

• To toggle bits in Argument 1, make Argument 1 and Argument 3 the same.
• To toggle a bit, Bit XOR with 1. Zero leaves the bit unchanged.

See Also: XOR (page X-1), Bit NOT (page B-5), NOT (page N-2), Bit XOR? (page B-20)
ioControl Command Reference B-19

Bit XOR?
Logical Condition

Function: To determine the bitwise difference of any two allowable values.

Typical Use: To detect a change of state of any bit in either of two values.

Details: • Performs a bitwise XOR? on Argument 1 and Argument 2. Examples:

• Evaluates True if the two allowable values are not equal, False if they are equal.
• Acts on all bits.
• Functionally equivalent to the Not Equal? condition when used with integer types.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the bitxor operator. Note that
for this command, I/O units cannot be used the same way as in the standard command. However,
you can accomplish the same thing using OptoScript code. In this example, the value of
DIG_1 is moved to a variable so the bitxor operator can be used:
if (GetIoUnitAsBinaryValue(DIG_1) bitxor PREV_DIG_1) then

The following is a simpler example; it bitxors two variables:
if (nVariable1 bitxor nVariable2) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. For more information
on logical operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• Although this condition can be used to determine the status of digital points, it is primarily
used to test bits in an integer variable. These bits can be used as flags to carry information
such as status, control, or fault (real-time or latch).

Argument 1 Argument 2 Result
0 0 False
0 1 True
1 0 True
1 1 False

Argument 1
Is
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Argument 2
[Value]
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Is DIG_1 SNAP-ENET-D64
Bit XOR?

PREV_DIG_1 Integer 32 Variable
B-20 ioControl Command Reference

B

• Use the False exit if the objective is to test for an exact match, or use the Equal? condition if

using numeric values.

See Also: Equal? (page E-16) Bit AND? (page B-3) Bit NOT (page B-5), Bit XOR (page B-18), Bit OR?
(page B-12)
ioControl Command Reference B-21

B-22 ioControl Command Reference

C
 C
Calculate & Set Analog Gain
Analog Point Action

Function: To improve the accuracy of an analog input signal.

Typical Uses: To improve calibration on a temperature input.

Details: • Reads the current value of a specified analog input and interprets it as the maximum
(100 percent, full-scale) value. Hence, the analog input should always be set to the full-scale
value before this command is used.

• Calculates a gain based on the current value that will cause this value to read 100 percent
(full scale).

• Stores the calculated gain in Argument 2 for subsequent use by Set Analog Gain, if desired.
• The calculated gain will be used until power is removed from the I/O unit, or it will always

be used if it is stored in flash memory at the I/O unit (recommended).
• The default gain value is 1.0. The valid range for gain is any floating point number.

Arguments:

OptoScript
Example:

CalcSetAnalogGain(On Point)
Gain_Coefficient = CalcSetAnalogGain(Boiler_Temperature);

This is a function command; it returns the calculated gain. The returned value can be consumed
by a variable (as in the example shown) or by a control structure, I/O point, etc. See Chapter 11
of the ioControl User’s Guide for more information.

Notes: • Instead of using this command, it is recommended that you calibrate inputs when
configuring I/O points in ioManager. See Opto 22 form 1440, the ioManager User’s Guide,
for instructions.

Dependencies: • Always use Calculate & Set Analog Offset before using this command.
• Always set the analog input to the full-scale (100 percent) value before using this command.

See Also: Calculate & Set Analog Offset (page C-2), Set Analog Gain (page S-8), Set Analog Offset
(page S-11)

Argument 1
On Point
Analog Input

Argument 2
Put Result in
Float Variable
Integer 32 Variable

Calculate & Set Analog Gain
On Point Boiler_Temperature Analog Input

Put Result in Gain_Coefficient Float Variable
ioControl Command Reference C-1

Calculate & Set Analog Offset
Analog Point Action

Function: To improve accuracy of an analog input signal.

Typical Uses: To improve calibration on a temperature input.

Details: • Reads the current value of a specified analog input and interprets it as the minimum
(0 percent, zero-scale) value. Hence, the analog input should always be set to the zero-scale
value before this command is used. (Note that zero scale on a bipolar input module with a
range of -10 VDC to +10 VDC is -10 VDC.)

• Calculates an offset based on the current input value that will cause this value to read 0
percent (zero scale).

• Stores the calculated offset in Argument 2 for subsequent use by Set Analog Offset.
• The calculated offset will be used until power is removed from the I/O unit, or it will always

be used if it is stored in flash memory at the I/O unit (recommended).

Arguments:

Standard
Example:

OptoScript
Example:

CalcSetAnalogOffset(On Point)
OFFSET = CalcSetAnalogOffset(Boiler_Temperature);

This is a function command; it returns the calculated offset. The returned value can be consumed
by a variable (as in the example shown) or by a control structure, I/O point, etc. See Chapter 11
of the ioControl User’s Guide for more information.

Notes: • This command is intended to be used in conjunction with Calculate & Set Analog Gain.
• Instead of using this command, it is recommended that you calibrate inputs when

configuring I/O points in ioManager. See Opto 22 form 1440, the ioManager User’s Guide,
for instructions.

See Also: Calculate & Set Analog Gain (page C-1), Set Analog Gain (page S-8), Set Analog Offset
(page S-11)

Argument 1
On Point
Analog Input

Argument 2
Put Result in
Float Variable
Integer 32 Variable

Calculate & Set Analog Offset
On Point Boiler_Temperature Analog Input

Put Result in OFFSET Integer 32 Variable
C-2 ioControl Command Reference

C

Calculate Strategy CRC
Control Engine Action

Function: Calculates and returns a 16-bit CRC on the program in RAM.

Typical Use: Periodically used in an error handler to check the integrity of the running program.

Details: Use the result to compare with the original CRC that was automatically calculated during the last
download. The original CRC is obtained by using Retrieve Strategy CRC. These two values should
match exactly.

Arguments:

Standard
Example:

OptoScript
Example:

CalcStrategyCrc()
New_CRC-Calc = CalcStrategyCrc();

This is a function command; it returns the 16-bit CRC. The returned value can be consumed by a
variable (as shown) or by another item, such as a mathematical expression or a control structure.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: This command could take several minutes to execute when seven tasks are running and the
program is very large. Therefore, do not use it in a chart where timing is critical.

See Also: Retrieve Strategy CRC (page R-23)

Argument 1
Put Result in
Integer 32 Variable

Calculate Strategy CRC
Put Result in New_CRC_Calc Integer 32 Variable
ioControl Command Reference C-3

Call Chart
Chart Action

Function: Starts another chart and immediately suspends the calling chart. Automatically continues the
calling chart when the called chart ends.

Typical Use: Allows a main or “executive” chart to easily orchestrate the execution of other charts that
typically have a dedicated function, thereby reducing the total number of charts running
concurrently.

Details: • This command is functionally a combination of three other commands, Start Chart, Suspend
Chart, and Continue Calling Chart. It attempts to start the specified chart and if successful,
suspends the chart that issued the command. There is no need to check the returned status
if it’s known that the called chart is stopped and that there is room in the task queue for
another chart. When the called chart finishes, the calling chart automatically continues.

• The status variable indicates success (0) or failure (error code -5 if the task is already
running).

Arguments:

Standard
Example:

OptoScript
Example:

CallChart(Chart)
Call_Status = CallChart(Tank_Monitor);

This is a function command; it returns a zero (indicating success) or an error (indicating failure).
The returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide for
more information.

Notes: • This command should be used judiciously. It can take up to 100 ms for the called chart to
start. Once the called chart has completed its logic, it can take another 100 ms to resume
the calling chart. Use this command only when timing is not critical. Otherwise, instead of
Call Chart, use a chart that runs continuously and uses subroutines for any kind of repetitive
logic.

• Typically used to chain charts so that they run sequentially rather than concurrently.
• Can be used by concurrently running charts calling a sub-chart that performs a common

function. For this use, the status must be checked to ensure success.

Dependencies: A task must be available in the task queue.

See Also: Continue Calling Chart (page C-37), Start Chart (page S-93), Suspend Chart (page S-106)

Argument 1
Chart
Chart

Argument 2
Put Status in
Float Variable
Integer 32 Variable

Call Chart
Chart Tank_Monitor Chart

Put Status in Call_Status Integer 32 Variable
C-4 ioControl Command Reference

C

ioControl Command Reference C-5

Calling Chart Running?
Chart Condition

Function: To check if the calling chart (the one that started this chart) is in the running state.

Typical Use: To determine the status of the chart that started this chart.

Details: Evaluates True if the calling chart is running, False if not.

Arguments: None.

Standard
Example:

Calling Chart Running?

OptoScript
Example:

IsCallingChartRunning()
Chart_Status = IsCallingChartRunning();

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a variable (as in the example shown) or by a control structure, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “Chart Commands” in Chapter 10 of the ioControl User’s Guide.

See Also: Continue Calling Chart (page C-37), Calling Chart Suspended? (page C-6) Calling Chart Stopped?
(page C-5)

Calling Chart Stopped?
Chart Condition

Function: To check if the calling chart (the one that started this chart) is in the stopped state.

Typical Use: To determine the status of the chart that started this chart.

Details: Evaluates True if the calling chart is stopped, False if not.

Arguments: None.

Standard
Example:

Calling Chart Stopped?

OptoScript
Example:

IsCallingChartStopped()
Chart_Status = IsCallingChartStopped();

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a variable (as in the example shown) or by a control structure, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “Chart Commands” in Chapter 10 of the ioControl User’s Guide.

See Also: Continue Calling Chart (page C-37), Calling Chart Suspended? (page C-6) Calling Chart Running?
(page C-5)

Calling Chart Suspended?
Chart Condition

Function: To check if the calling chart (the one that started this chart) is in the suspended state.

Typical Use: Called before Continue Calling Chart to ensure its success.

Details: Evaluates True if the calling chart is suspended, False if not.

Arguments: None.

Standard
Example:

Calling Chart Suspended?

OptoScript
Example:

IsCallingChartSuspended()
Chart_Status = IsCallingChartSuspended();

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a variable (as in the example shown) or by a control structure, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Chart Commands” in Chapter 10 of the ioControl User’s Guide.
• Always use before Continue Calling Chart to ensure its success. See the Continue Calling

Chart action for details.

See Also: Continue Calling Chart (page C-37), Calling Chart Stopped? (page C-5) Calling Chart Running?
(page C-5)
C-6 ioControl Command Reference

C

Caused a Chart Error?
Error Handling Condition

Function: To determine if the specified chart caused the current error in the message queue.

Typical Use: To determine which chart caused the current error.

Details: • Evaluates True if the specified chart caused the error, False otherwise.
• The current error is the oldest one and is always at the top of the message queue.

Arguments:

Standard
Example:

OptoScript
Example:

HasChartCausedError(Chart)
if (HasChartCausedError(POWERUP)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: Use Debug mode to view the message queue for detailed information.

Dependencies: Prior to using this call, you should ensure that the error of interest is pointed to by using the
Remove Current Error and Point to Next Error command.

See Also: Get Error Code of Current Error (page G-52), Remove Current Error and Point to Next Error
(page R-22)

Argument 1
Has
Chart

Has POWERUP Chart
Caused a Chart Error?
ioControl Command Reference C-7

Caused an I/O Unit Error?
Error Handling Condition

Function: To determine if the specified I/O unit caused the top error in the message queue.

Typical Use: To determine which I/O unit caused an error.

Details: • Evaluates True if the specified I/O unit caused the error, False otherwise.
• You must use Error on I/O Unit? before using this command, since this command assumes

the top error is an I/O error.

Arguments:

Standard
Example:

OptoScript
Example:

HasIoUnitCausedError(I/O Unit)
if (HasIoUnitCausedError(DIG_UNIT_1)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • Be sure the top error in the queue is an I/O error.
• Use Debug mode to view the message queue for detailed information.

Dependencies: You must use Error on I/O Unit? before using this command.

See Also: Error on I/O Unit? (page E-20), Get Error Code of Current Error (page G-52), Remove Current Error
and Point to Next Error (page R-22)

Argument 1
Has
B100
B200
B3000 (Analog)
B3000 (Digital)
G4A8R, G4RAX
G4D16R
G4D32RS
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Has DIG_UNIT_1 SNAP-UP1-D64
Caused an I/O Unit Error?
C-8 ioControl Command Reference

C

Chart Running?
Chart Condition

Function: To check if the specified chart is in the running state.

Typical Use: To determine the status of the specified chart.

Details: Evaluates True if the specified chart is running, False if not.

Arguments:

Standard
Example:

OptoScript
Example:

IsChartRunning(Chart)
Chart_Status = IsChartRunning(Chart_B);

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a variable (as in the example shown) or by a control structure, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Chart Commands” in Chapter 10 of the ioControl User’s Guide.
• When a chart calls a Start Chart followed immediately by a Suspend Chart to suspend itself,

it depends on the target chart to continue it later. Hence, it is imperative that the target chart
be started, otherwise the original (calling) chart will remain suspended. This command can
determine if the target chart has started.

See Also: Chart Suspended? (page C-11) Chart Stopped? (page C-10) Call Chart (page C-4), Start Chart
(page S-93), Stop Chart (page S-99)

Argument 1
Is
Chart

Is CHART_B Chart
Chart Running?
ioControl Command Reference C-9

Chart Stopped?
Chart Condition

Function: To check if the specified chart is in the stopped state.

Typical Use: Used before Start Chart to ensure its success when it is imperative that Start Chart succeed.

Details: Evaluates True if the specified chart is stopped, False if not.

Arguments:

Standard
Example:

OptoScript
Example:

IsChartStopped(Chart)
Chart_Status = IsChartStopped(Chart_B);

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a variable (as in the example shown) or by a control structure, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “Chart Commands” in Chapter 10 of the ioControl User’s Guide.

See Also: Chart Suspended? (page C-11) Chart Running? (page C-9) Call Chart (page C-4), Start Chart
(page S-93), Stop Chart (page S-99)

Argument 1
Is
Chart

Is CHART_B Chart
Chart Stopped?
C-10 ioControl Command Reference

C

Chart Suspended?
Chart Condition

Function: To check if the specified chart is in the suspended state.

Typical Use: To determine the status of the specified chart.

Details: Evaluates True if the specified chart is suspended, False if not.

Arguments:

Standard
Example:

OptoScript
Example:

IsChartSuspended(Chart)
Chart_Status = IsChartSuspended(Chart_B);

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a variable (as in the example shown) or by a control structure, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Chart Commands” in Chapter 10 of the ioControl User’s Guide.
• Use before Continue Chart to ensure success.

See Also: Chart Running? (page C-9), Chart Stopped? (page C-10), Continue Chart (page C-38), Suspend
Chart (page S-106)

Argument 1
Is
Chart

Is CHART_B Chart
Chart Suspended?
ioControl Command Reference C-11

Clamp Float Table Element
Mathematical Action

Function: To force a table element value to be greater than or equal to a low limit and less than or equal
to a high limit.

Typical Use: To keep values within a desired range. Very useful on analog input signals to prevent
out-of-range values from being evaluated as real values.

Details: • A table element value greater than the high limit will be set to the high limit. A table
element value less than the low limit will be set to the low limit. Any other value is
left unchanged.

• Use this command before evaluating the table value each time.

Arguments:

Standard
Example:

OptoScript
Example:

ClampFloatTableElement(High Limit, Low Limit, Element Index, Of Float Table)
ClampFloatTableElement(Max_Flow_Rate, Low_Flow_Cutoff, 4, Flow_Data);

This is a procedure command; it does not return a value.

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to the table size.

See Also: Clamp Integer 32 Table Element (page C-14), Clamp Float Variable (page C-13), Clamp Integer 32
Variable (page C-15)

Argument 1
High Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Low Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
Element Index
Integer 32 Literal
Integer 32 Variable

Argument 4
Of Table
Float Table

Clamp Float Table Element
High Limit Max_Flow_Rate Float Variable
Low Limit Low_Flow_Cutoff Float Variable

Element Index 4 Integer 32 Literal
Of Table Flow_Data Float Table
C-12 ioControl Command Reference

C

Clamp Float Variable
Mathematical Action

Function: To force a variable value to be greater than or equal to a low limit and less than or equal to a
high limit.

Typical Use: To keep values within a desired range. Very useful on analog input signals to prevent
out-of-range values from being evaluated as real values.

Details: • A variable value greater than the high limit will be set to the high limit. A variable value less
than the low limit will be set to the low limit. Any other value is left unchanged.

• Use this command before evaluating the variable value each time.

Arguments:

Standard
Example:

OptoScript
Example:

ClampFloatVariable(High Limit, Low Limit, Float Variable to Clamp)
ClampFloatVariable(Max_Flow_Rate, Low_Flow_Cutoff, Flow_Var);

This is a procedure command; it does not return a value.

See Also: Clamp Integer 32 Variable (page C-15), Clamp Float Table Element (page C-12), Clamp Integer 32
Table Element (page C-14)

Argument 1
High Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Low Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
Float Variable
Float Variable

Clamp Float Variable
High Limit Max_Flow_Rate Float Variable
Low Limit Low_Flow_Cutoff Float Variable

Float Variable Flow_Var Float Variable
ioControl Command Reference C-13

Clamp Integer 32 Table Element
Mathematical Action

Function: To force a table element value to be greater than or equal to a low limit and less than or equal
to a high limit.

Typical Use: To keep values within a desired range. Very useful to prevent out-of-range values from being
evaluated as real values.

Details: • A table element value greater than the high limit will be set to the high limit. A table
element value less than the low limit will be set to the low limit. Any other value is left
unchanged.

• Use this command before evaluating the table value each time.

Arguments:

Standard
Example:

OptoScript
Example:

ClampInt32TableElement(High Limit, Low Limit, Element Index, Of Integer 32 Table)
ClampInt32TableElement(Max_Flow_Rate, Low_Flow_Cutoff, 4, Flow_Data);

This is a procedure command; it does not return a value.

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to the table size.

See Also: Clamp Float Table Element (page C-12), Clamp Integer 32 Variable (page C-15), Clamp Float
Variable (page C-13)

Argument 1
High Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Low Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
Element Index
Integer 32 Literal
Integer 32 Variable

Argument 4
Of Integer 32 Table
Integer 32 Table

Clamp Integer 32 Table Element
High Limit Max_Flow_Rate Float Variable
Low Limit Low_Flow_Cutoff Float Variable

Element Index 4 Integer 32 Literal
Of Integer 32 Table Flow_Data Integer 32 Table
C-14 ioControl Command Reference

C

Clamp Integer 32 Variable
Mathematical Action

Function: To force a variable value to be greater than or equal to a low limit and less than or equal to a
high limit.

Typical Use: To keep values within a desired range. Very useful to prevent out-of-range values from being
evaluated as real values.

Details: • A variable value greater than the high limit will be set to the high limit. A variable value less
than the low limit will be set to the low limit. Any other value is left unchanged.

• Use this command before evaluating the variable value each time.

Arguments:

Standard
Example:

OptoScript
Example:

ClampInt32Variable(High Limit, Low Limit, Integer 32 Variable to Clamp)
ClampInt32Variable(Max_Flow_Rate, Low_Flow_Cutoff, Flow_Var);

This is a procedure command; it does not return a value.

See Also: Clamp Float Variable (page C-13), Clamp Integer 32 Table Element (page C-14), Clamp Float Table
Element (page C-12)

Argument 1
High Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Low Limit
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
Integer 32 Variable
Integer 32 Variable

Clamp Integer 32 Variable
High Limit Max_Flow_Rate Float Variable
Low Limit Low_Flow_Cutoff Float Variable

Integer 32 Variable Flow_Var Integer 32 Variable
ioControl Command Reference C-15

Clamp Mistic PID Output
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Function: To force a PID output value to be greater than or equal to a low limit and less than or equal to a
high limit.

Typical Use: To keep the PID output within a desired range while it is fully operational in auto mode.

Details: • A calculated PID output value greater than the high limit will be set to the high limit. A
calculated PID output value less than the low limit will be set to the low limit. Any other
calculated PID output value is left unchanged.

• If this command is sent when the PID is in manual mode, the command will not be executed.
• This command takes effect at the next PID scan interval.

Arguments:

Standard
Example:

OptoScript
Example:

ClampMisticPidOutput(High Clamp, Low Clamp, On PID Loop)
ClampMisticPidOutput(Max_PID_output, Min_PID_output, Extruder_zone8);

This is a procedure command; it does not return a value.

Dependencies: Will not clamp values written directly to the analog output channel by anything else besides the
PID on the I/O unit.

See Also: Clamp Mistic PID Setpoint (page C-17)

Argument 1
High Clamp
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Low Clamp
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
On PID Loop
PID Loop

Clamp Mistic PID Output
High Clamp Max_PID_output Float Variable
Low Clamp Min_PID_output Float Variable
On PID Loop Extruder_zone8 PID Loop
C-16 ioControl Command Reference

C

Clamp Mistic PID Setpoint
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Function: To force a PID setpoint value to be greater than or equal to a low limit and less than or equal to
a high limit.

Typical Use: To keep an operator from moving the PID setpoint outside a desired range.

Details: • A setpoint value greater than the high limit will be set to the high limit. A setpoint value less
than the low limit will be set to the low limit. Any other setpoint value is left unchanged.

• If this command is sent when the PID is in manual mode, the command will not be executed.
• This command takes effect at the next PID scan interval.

Arguments:

Standard
Example:

OptoScript
Example:

ClampMisticPidSetpoint(High Clamp, Low Clamp, On PID Loop)
ClampMisticPidSetpoint(Max_PID_output, Min_PID_output, Extruder_zone8);

This is a procedure command; it does not return a value.

See Also: Clamp Mistic PID Output (page C-16)

Argument 1
High Clamp
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Low Clamp
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
On PID Loop
PID Loop

Clamp Mistic PID Setpoint
High Clamp Max_PID_output Float Variable
Low Clamp Min_PID_output Float Variable
On PID Loop Extruder_zone8 PID Loop
ioControl Command Reference C-17

Clear All Errors
Error Handling Action

Function: To clear the message queue.

Typical Use: To clear all errors from a full message queue.

Details: This function clears all errors and messages in the queue. Normally this is not necessary. If your
program performs error checking, it will eventually clear the message queue. If no error checking
is done, simply let the queue fill up. The queue holds a total of 1000 errors and messages.

Arguments: None.

Standard
Example:

Clear All Errors

OptoScript
Example:

ClearAllErrors()
ClearAllErrors();

This is a procedure command; it does not return a value.

Notes: Downloading and running a strategy automatically clears all errors.
Errors can also be cleared when inspecting the control engine in Debug mode or from ioTerminal,
by clicking View Errors and then clicking Clear Errors.

See Also: Get Error Code of Current Error (page G-52), Get Error Count (page G-53), Remove Current Error
and Point to Next Error (page R-22), Get ID of Block Causing Current Error (page G-64), Get Name
of I/O Unit Causing Current Error (page G-99)
C-18 ioControl Command Reference

C

Clear All Event Latches
Event/Reaction Action

NOTE: This command is for mistic I/O units only.

Function: To reset all 256 event latches on the I/O unit.

Typical Use: In the Powerup chart, to reset all event latches on the I/O unit to a known or default state.

Details: Each event sets a latch at the moment its criteria is True. This command resets all latches.

Arguments:

Standard
Example:

OptoScript
Example:

ClearAllEventLatches(On I/O Unit)
ClearAllEventLatches(ESTOP_BUTTONS);

This is a procedure command; it does not return a value.

Notes: • Use with care, since this command will erase the history of all event latches.
• Normally Clear Event Latch is used to reset a single event latch after it has been evaluated.

Dependencies: Event/reactions are not supported on local simple I/O units.

See Also: Clear Off-Latch (page C-26)

Argument 1
On I/O Unit
B100
B200
B3000 (Analog)
B3000 (Digital)
G4A8R, G4RAX
G4D16R
SNAP-BRS

Clear All Event Latches
On I/O Unit ESTOP_BUTTONS G4A8R, G4RAX
ioControl Command Reference C-19

Clear All Latches
Digital Point Action

Function: To reset all standard digital input latches on a digital or mixed I/O unit.

Typical Use: To ensure all input on- or off-latches are reset. Usually performed after a powerup sequence.

Details: • Standard digital only. For high-density digital, see Clear All HDD Module On-Latches.
• Clears all previously set on- or off-latches associated with input points on the specified I/O

unit regardless of the on/off status of the inputs.
• All input points automatically have the latch feature.
• An on-latch is set when the input point changes from off to on.
• An off-latch is set when the input point changes from on to off.

Arguments:

Standard
Example:

OptoScript
Example:

ClearAllLatches(On I/O Unit)
ClearAllLatches(INPUT_BOARD_1);

This is a procedure command; it does not return a value.

Queue Errors: -52 = Invalid connection—the I/O unit or point is disabled.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

Notes: If using the latching feature on one or more digital inputs, it is a good practice to clear all the
latches after powerup or reset.

See Also: Clear On-Latch (page C-27), Clear Off-Latch (page C-26)

Argument 1
On I/O Unit
B100*
B3000 (Digital)*
G4D16R*
G4D32RS*
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2
SNAP-BRS*

* ioControl Professional only

Clear All Latches
On I/O Unit INPUT_BOARD_1 SNAP-ENET-D64
C-20 ioControl Command Reference

C

Clear Communication Receive Buffer
Communication Action

Function: To clear the receive buffer of a communication handle.

Typical Use: To discard any data waiting to be received on a specific communication handle (for TCP and other
communication handles that use a receive buffer).

Details: This command is the equivalent of a Get Number of Characters Waiting command followed by a
Receive N Characters command, when the characters received are discarded.

Arguments:

Standard
Example:

OptoScript
Example:

ClearCommunicationReceiveBuffer(Communication Handle)
ClearCommunicationReceiveBuffer(UIO_B);

This is a procedure command; it does not return a value.

Notes: • See “Communication Commands” in Chapter 10 of the ioControl User’s Guide.
• If this command is used with a communication handle that cannot receive data (for example,

the ftp communication handle), the command will have no effect.
• This command replaces the obsolete Clear Receive Buffer command.

See Also: Close Communication (page C-29), Get Number of Characters Waiting (page G-101), Receive N
Characters (page R-14)

Argument 1
Communication Handle
Communication Handle

Clear Communication Receive Buffer
Communication Handle UIO_B Communication Handle
ioControl Command Reference C-21

Clear Counter
Digital Point Action

Function: To reset a standard digital input counter or quadrature counter to zero.

Typical Use: To reset a digital input configured with a counter or quadrature counter feature.

Details: • Standard digital only. For high-density digital, see Get & Clear HDD Module Counter.
• Resets the specified counter or quadrature counter input to zero as soon as it is used.
• Does not stop the counter or quadrature counter from continuing to run (as Stop Counter

does).
• A quadrature counter occupies two adjacent points, so quadrature modules appear with only

points 00 and 02 available.

Arguments:

Standard
Example:

OptoScript
Example:

ClearCounter(On Point)
ClearCounter(Bottle_Counter);

This is a procedure command; it does not return a value.

Dependencies: Applies only to standard digital inputs configured with the counter or quadrature counter feature.

See Also: Get Counter (page G-48), Get & Clear Counter (page G-18), Start Continuous Square Wave
(page S-94), Stop Counter (page S-101)

Argument 1
On Point
Counter
Quadrature Counter

Clear Counter
On Point Bottle_Counter Counter
C-22 ioControl Command Reference

C

Clear Event Latch
Event/Reaction Action

Function: To reset a specified event latch on the I/O unit.

Typical Use: After an event has been evaluated.

Details: To determine that a specified event has occurred, the event latch must be checked. One way to
check the event latch is to use the condition Event Occurred? To detect the next incident of the
event, the event latch must be reset using this command.

Arguments:

Standard
Example:

OptoScript
Example:

ClearEventLatch(On Event/Reaction)
ClearEventLatch(ESTOP_BUTTON_1);

This is a procedure command; it does not return a value.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on simple I/O units.

See Also: Event Occurred? (page E-21)

Argument 1
On Event/Reaction
Analog Event/Reaction
Digital Event/Reaction

Clear Event Latch
On Event/Reaction ESTOP_BUTTON_1 Analog Event/Reaction
ioControl Command Reference C-23

Clear HDD Module Off-Latches
High Density Digital Module Action

Function: To reset specific off-latches on a high-density digital input module.

Typical Use: To clear some off-latches and not clear others on the same module.

Details: • Works only on high-density digital modules, not on standard digital modules.
• Uses a bitmask to indicate the off-latches to clear. The least significant bit corresponds to

point zero. To clear the off-latch on a point, set its respective bit to a value of 1. To leave a
point unaffected, set its bit to a value of 0.

Arguments:

Standard
Example:

The effect of this command is illustrated below. Off-latches for point numbers 1, 6, 7, 25, and 26
are cleared.

OptoScript
Example:

ClearHddModuleOffLatches(I/O Unit, Module Number, Clear Mask)
OffLatch_Status = ClearHddModuleOffLatches(UIO_A, 6, 0x060000C2);

This is a function command; it returns one of the status codes shown below.

Notes: • Usually used after Get HDD Module Off-Latches. To read and reset all the off-latches on one
module at once, use Get & Clear HDD Module Off-Latches. To read and reset all off-latches
on all high-density modules on the I/O unit, use Get & Clear All HDD Module Off-Latches.

• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,
and see form #1547, the SNAP High-Density Digital Module User’s Guide.

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Module Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Clear Mask
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status In
Integer 32 Variable

Clear HDD Module Off-Latches
I/O Unit UIO_A SNAP-UP1-ADS

Module Number 6 Integer 32 Variable
Clear Mask 0x060000C2 Integer 32 Literal

Put Status in OffLatch_Status Integer 32 Variable

Point Number 31 30 29 28 27 26 25 24 7 6 5 4 3 2 1 0

Bit Mask
Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2
C-24 ioControl Command Reference

C

Status Codes: 0 = Success

-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Clear HDD Module On-Latches (page C-25), Get & Clear HDD Module Off-Latches (page G-22),
Get & Clear All HDD Module Off-Latches (page G-10)

Clear HDD Module On-Latches
High Density Digital Module Action

Function: To reset specific on-latches on a high-density digital input module.

Typical Use: To clear some on-latches and not clear others on the same module.

Details: • Works only on high-density digital modules, not on standard digital modules.
• Uses a bitmask to indicate the on-latches to clear. The least significant bit corresponds to

point zero. To clear the on-latch on a point, set its respective bit to a value of 1. To leave a
point unaffected, set its bit to a value of 0.

Arguments:

Standard
Example:

The effect of this command is illustrated below. On-latches for point numbers 1, 6, 7, 25, and 26
are cleared.

OptoScript
Example:

ClearHddModuleOnLatches(I/O Unit, Module Number, Clear Mask)
OnLatch_Status = ClearHddModuleOnLatches(UIO_A, 6, 0x060000C2);

This is a function command; it returns one of the status codes shown below.

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Module Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Clear Mask
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status In
Integer 32 Variable

Clear HDD Module On-Latches
I/O Unit UIO_A SNAP-UP1-ADS

Module Number 6 Integer 32 Variable
Clear Mask 0x060000C2 Integer 32 Literal

Put Status in OnLatch_Status Integer 32 Variable

Point Number 31 30 29 28 27 26 25 24 7 6 5 4 3 2 1 0

Bit Mask
Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2
ioControl Command Reference C-25

Notes: • Usually used after Get HDD Module On-Latches. To read and reset all the on-latches on one
module at once, use Get & Clear HDD Module On-Latches.

• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,
and see form #1547, the SNAP High-Density Digital Module User’s Guide.

Status Codes: 0 = Success
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Clear HDD Module Off-Latches (page C-24), Get & Clear HDD Module On-Latches (page G-24),
Get & Clear All HDD Module On-Latches (page G-12)

Clear Off-Latch
Digital Point Action

Function: To reset a previously set standard digital input off-latch.

Typical Use: To reset the off-latch associated with a digital input to catch the next transition.

Details: • Standard digital only. For high-density digital, see Clear HDD Module Off-Latches.
• Resets the off-latch of a single digital input regardless of the on/off status of the input.
• The next time the input point changes from on to off, the off-latch will be set.
• Off-latches are very useful for catching high-speed on-off-on input transitions.

Arguments:

Standard
Example:

OptoScript
Example:

ClearOffLatch(On Point)
ClearOffLatch(BUTTON_1);

This is a procedure command; it does not return a value.

Queue Errors: -52 = Invalid connection—the I/O unit or point is disabled.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

Notes: Clear an off-latch after a Get Off-Latch command to re-arm the latch.

See Also: Get Off-Latch (page G-102), Clear All Latches (page C-20)

Argument 1
On Point
Digital Input

Clear Off-Latch
On Point BUTTON_1 Digital Input
C-26 ioControl Command Reference

C

Clear On-Latch
Digital Point Action

Function: To reset a previously set standard digital input on-latch.

Typical Use: To reset the on-latch associated with a digital input to catch the next transition.

Details: • Standard digital only. For high-density digital, see Clear HDD Module On-Latches.
• Resets the on-latch of a single digital input regardless of the on/off status of the input.
• The next time the input point changes from off to on, the on-latch will be set.
• On-latches are very useful for catching high-speed off-on-off input transitions.

Arguments:

Standard
Example:

OptoScript
Example:

ClearOnLatch(On Point)
ClearOnLatch(Button_1);

This is a procedure command; it does not return a value.

Queue Errors: -52 = Invalid connection—the I/O unit or point is disabled.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

Notes: Clear an on-latch after a Get On-Latch command to re-arm the latch.

See Also: Get On-Latch (page G-106), Clear All Latches (page C-20)

Argument 1
On Point
Digital Input

Clear On-Latch
On Point Button_1 Digital Input
ioControl Command Reference C-27

Clear Pointer
Pointers Action

Function: To NULL out a pointer.

Typical Use: To clear a pointer so that it no longer points to an object.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the functionality is built in. Assign null to the pointer:
IO_Pointer = null;

Notes: Operations cannot be performed on NULL pointers. NULL pointers do not point to
any object.

See Also: Move to Pointer (page M-19), Clear Pointer Table Element (page C-28)

Clear Pointer Table Element
Pointers Action

Function: To NULL out the specified element of a pointer table.

Typical Use: To clear an element in a pointer table so that it no longer points to any object.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the functionality is built in. Assign null to the pointer:
IO_POINTER_TABLE[17] = null;

Notes: Operations cannot be performed on a NULL pointer.

Queue Errors: -12 = Invalid table index value—index was negative or greater than the table size.

See Also: Move to Pointer Table Element (page M-21)

Argument 1
Pointer
Pointer Variable

Clear Pointer
Pointer IO_Pointer Pointer Variable

Argument 1
Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Pointer Table

Clear Pointer Table Element
Index 17 Integer 32 Literal

Of Table IO_POINTER_TABLE Pointer Table
C-28 ioControl Command Reference

C

Clear Receive Buffer
Communication Action

Function: Obsolete command. Use Clear Communication Receive Buffer instead.

Close Communication
Communication Action

Function: To disconnect the previously established communication link, or to send the data currently
buffered in the temporary FTP file.

Typical Use: To end communication with the other entity (for example, a device on the network or a file) that
was specified by a communication handle.

Arguments:

Standard
Example:

OptoScript
Example:

CloseCommunication(Communication Handle)
Ethernet_Status = CloseCommunication(UIO_A);

This is a function command; it returns a status code as shown below.

Notes: • See “Communication Commands” in Chapter 10 of the ioControl User’s Guide.
• When using an FTP communication handle, the data to be sent via FTP is held in a temporary

FTP file until either this command is used or the FTP destination file is changed using Send
Communication Handle Command.

Status Codes: 0 = Success
-37 = Lock port timeout.
-52 = Invalid connection—not opened.
-78 = No destination given (FTP destination file).

See Also: Open Outgoing Communication (page O-4), Send Communication Handle Command (page S-2)

Argument 1
Communication Handle
Communication Handle

Argument 2
Put Status in
Integer 32 Variable

Close Communication
Communication Handle UIO_A Communication Handle

Put Status in Ethernet_Status Integer 32 Variable
ioControl Command Reference C-29

Comment (Block)
Miscellaneous Action or Condition

Function: To disable one or more commands in an action or condition block.

Typical Use: To temporarily disable commands within an action or condition block during debugging.

Details: • This command is normally used in pairs. Everything between the pair of Comment (Block)
commands is considered a comment and is ignored when the strategy is compiled and
downloaded. In the Instructions dialog box, commands that are commented out appear in
gray.

• This command is useful for temporarily disabling a group of commands within an action
block while debugging a program.

• If the second Comment (Block) is omitted, everything from the first Comment (Block) to the
end of the action block is considered a comment.

Arguments: None.

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the functionality is built in. Use a slash and an asterisk before
the block comment, and an asterisk and a slash after the block comment:
/* block comment */

See Also: Comment (Single Line) (page C-31)

Comment (Block)
Action or Condition
Action or Condition
Action or Condition

Comment (Block)
C-30 ioControl Command Reference

C

Comment (OptoControl Conversion Issue)
Miscellaneous Action or Condition

Function: A Comment is inserted automatically when a command does not convert from OptoControl to
ioControl. This command is not added to a strategy by a user.

Typical Use: To locate areas in a strategy where a command did not convert.

Details: To find Comments in a strategy:

1 In the Configure Mode, choose Edit➞Find. The Find dialog box appears.

2 Under Search Scope, select Global.

3 Under Search For, select Instruction and Action.

4 Under Instruction, select Comment (OptoControl Conversion Issue), then click Find. A list
appears that identifies each Comment.

Comment (Single Line)
Miscellaneous Action or Condition

Function: To add a comment to an action or condition block.

Typical Use: To document commands within a block.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the functionality is built in. Use two slashes before the
comment.
// single line comment

See Also: Comment (Block) (page C-30)

Argument 1
[Value]
String Literal

Comment (Single Line)
PROCESS_CONTROL_START String Literal
ioControl Command Reference C-31

Communication Open?
Communication Condition

Function: To determine if the specified communication is still online.

Typical Use: To determine if the communication handle was successfully opened or is still open, before
attempting to send communication.

Arguments:

Standard
Example:

OptoScript
Example:

IsCommunicationOpen(Communication Handle)
if (IsCommunicationOpen(UIO_A)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Communication Commands” in Chapter 10 of the ioControl User’s Guide.
• This command will return false only if the Close Communication command has been called

on the communication handle, or if the handle was closed during an unsuccessful operation.
For example, an unrecoverable failure during a Transmit command could cause the handle to
be closed.

• Using TCP, this command will return a true (non-zero) even if the other side has closed. This
situation is called a “half open” connection. Even though the other side has closed, there
may still be characters buffered by the control engine. Make sure the characters are
received (and the communication handle closed, if appropriate) so that sessions aren’t used
up by a half-open state.

See Also: Accept Incoming Communication (page A-2), Open Outgoing Communication (page O-4), Close
Communication (page C-29)

Argument 1
Communication Handle
Communication Handle

Communication Open?
UIO_A Communication Handle
C-32 ioControl Command Reference

C

Communication to All I/O Points Enabled?
Simulation Condition

Function: To determine whether communication between the program in the control engine and all analog
and digital points is enabled.

Typical Use: For simulation and testing. An I/O point might be disabled if you do not want to communicate
with it during testing.

Details: All analog and digital point communication is enabled by default. It can be turned off for
individual points in the configuration dialog box or by using the command Disable
Communication to Point. Use this command to find out if communication has been disabled.

Arguments: None

Standard
Example:

Communication to All I/O Points Enabled?

OptoScript
Example:

IsCommToAllIoPointsEnabled()
if (IsCommToAllIoPointsEnabled()) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • This command is much faster than checking points individually.
• Be aware that I/O points may not be reachable even if communication is enabled. For

example, the I/O unit may be turned off or unplugged, but its points may still be enabled. To
determine whether an I/O unit is reachable, use I/O Unit Ready?

See Also: Disable Communication to All I/O Points (page D-4), Enable Communication to All I/O Points
(page E-1), Disable Communication to Point (page D-11), I/O Point Communication Enabled?
(page I-2)
ioControl Command Reference C-33

Communication to All I/O Units Enabled?
Simulation Condition

Function: To determine whether communication between the program in the control engine and all I/O
units is enabled.

Typical Use: For simulation and testing. An I/O unit might be disabled if you do not want to communicate with
it during testing.

Arguments: None.

Standard
Example:

Communication to All I/O Units Enabled?

OptoScript
Example:

IsCommToAllIoUnitsEnabled()
if (IsCommToAllIoUnitsEnabled()) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • This command is much faster than checking I/O units individually.
• Be aware that the I/O unit may not be reachable even if communication is enabled. For

example, the I/O unit may be turned off or unplugged, but its points and the unit itself may
still be enabled. To determine whether an I/O unit is reachable, use I/O Unit Ready?

See Also: Disable Communication to All I/O Units (page D-5), Enable Communication to All I/O Units
(page E-2), Disable Communication to I/O Unit (page D-7), I/O Unit Communication Enabled?
(page I-3)
C-34 ioControl Command Reference

C

Compare Strings
String Action

Function: To compare two strings to see if they are the same or if one is less than the other.

Typical Use: To sort strings.

Details: • Strings are compared character by character according to their ASCII value. See the ASCII
table in the “String Commands” section of Chapter 10 in the ioControl User’s Guide. Note
that number values are lower than letter values and that all uppercase letter values are
lower than all lowercase letter values.

• If the strings are different lengths, they are compared up to the length of the shorter string.
If the compared portions are equal, the shorter string is found to be less than the longer one.

• The result returned indicates the relationship between the two strings:

Examples:

• Quotes (““) are used in OptoScript code, but not in standard ioControl code.

Arguments:

Example:

OptoScript
Example:

CompareStrings(String 1, String 2)
String_Test = CompareStrings(Search_Name, Current_Name);

This is a function command; it returns one of the values shown above (-1, 0, or 1). The returned
value can be consumed by a variable (as shown in the example) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide.

Notes: See “String Commands” in Chapter 10 of the ioControl User’s Guide.

See Also: Test Equal Strings (page T-3)

-1 = String 1 less than String 2
0 = Strings equal
1 = String 1 greater than String 2

String 1 String 2 Result Relationship
"abcDEF" "abcDEF" 0 Strings equal
"abcDEF" "abcdef" -1 String 1 less
"abcDEF" "ABCDEF" 1 String 1 greater
"abcDEF" "abcdEF" -1 String 1 less
"abcDEF" "AbcDEF" 1 String 1 greater
"abcDEF" "abcDE" 1 String 1 greater
"abcDEF" "abcDEFG" -1 String 1 less
"abcDEF" "aBcDEF" 1 String 1 greater
"abcDEF" "9abcDEF" 1 String 1 greater
"abcDEF" "DEFabc" 1 String 1 greater

Argument 1
Compare
String Literal
String Variable

Argument 2
With
String Literal
String Variable

Argument 3
Put Result In
Integer 32 Variable

Compare Strings
Compare Search_Name String Variable

With Current_Name String Variable
Put Result In String_Test Integer 32 Variable
ioControl Command Reference C-35

Complement
Mathematical Action

Function: To change the sign of a number from positive to negative or from negative to positive.

Typical Use: To make a result positive after subtracting a large number from a small number. The command
Absolute Value is another, better way to accomplish the same thing.

Details: Same as multiplying by -1, but executes faster. Thus, -1 becomes 1, 1 becomes -1, etc.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the minus sign:
- Temperature_Difference

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• The complement of zero is zero.

See Also: Bit NOT (page B-5), NOT (page N-2), Absolute Value (page A-1)

Argument 1
[Value]
Float Variable
Integer 32 Variable
Integer 64 Variable

Complement
Temperature_Difference Float Variable
C-36 ioControl Command Reference

C

Continue Calling Chart
Chart Action

Function: To continue the chart that started the current chart without having to know its name.

Typical Use: To restart a suspended chart.

Details: • This command is not normally needed, since a called chart, when finished, automatically
continues the chart that called it. Use this command only if you need to restart the calling
chart before the chart it called is finished.

• The only effect this command will have is to continue a suspended chart. If the calling chart
is in any other state, the calling chart will be unaffected by this command.

• The calling chart will resume execution at its next scheduled time in the task queue.
• The STATUS variable indicates success (0) or failure (non-zero). Since a failure would “break

the chain” of execution, care must be taken to ensure success. In this example, it is possible
for CHART_A to start SUB_CHART_A, then lose its time slice before it suspends itself,
leaving it in the running state. Further, it is possible for SUB_CHART_A to complete
execution in its allocated time slice(s) and issue the Continue Calling Chart command, which
will fail because the calling chart is still in the running state.

To prevent this situation, SUB_CHART_A should be modified to add the condition Calling
Chart Suspended? just before the Continue Calling Chart action. The True exit will lead
directly to the Continue Calling Chart action, but the False exit will loop back to the Calling
Chart Suspended? condition itself to re-evaluate if the chart has been suspended. This
ensures proper operation.

For the same reason, the condition Chart Stopped? should preface the Start Chart
“SUB_CHART_A” command.

Arguments:

Standard
Example:

OptoScript
Example:

ContinueCallingChart()
STATUS = ContinueCallingChart();

This is a function command; it returns a non-zero (indicating success) or a zero (indicating failure).

Notes: See “Chart Commands” in Chapter 10 of the ioControl User’s Guide.

See Also: Call Chart (page C-4), Calling Chart Suspended? (page C-6)

Argument 1
Put Status in
Float Variable
Integer 32 Variable

Continue Calling Chart
Put Status in STATUS Integer 32 Variable
ioControl Command Reference C-37

Continue Chart
Chart Action

Function: To change the state of a specified chart from suspended to running.

Typical Use: In conjunction with Suspend Chart, to cause a specified chart to resume execution from where it
left off.

Details: • The only effect this command will have is to continue a suspended chart. If the specified
chart is in any other state, it will be unaffected by this command.

• Upon success, the chart will resume execution at its next scheduled time in the task queue
at the point at which it was suspended.

• Suspended charts give up their time slice.
• The STATUS variable indicates success (0) or failure (non-zero).
• It is possible for CHART_A to complete execution of the commands between Suspending

Chart B and Continuing Chart B in its allocated time slice(s). If this happens the Continue
Chart “CHART_B” command will fail, because the actual state of Chart B hasn’t changed
since it hasn’t received a time slice yet.

Arguments:

Standard
Example:

OptoScript
Example:

ContinueChart(Chart)
= ContinueChart(CHART_A);

This is a function command; it returns a zero (indicating success) or a non-zero (indicating failure).

Notes: • This command should be used judiciously. It can take up to 100 ms for the chart to continue.
Use this command only when timing is not critical. Otherwise, instead of Continue Chart,
use a chart that runs continuously and uses subroutines for any kind of repetitive logic.

• See “Chart Commands” in Chapter 10 of the ioControl User’s Guide.
• Loop on Chart Suspended? before this command if success is critical.

See Also: Suspend Chart (page S-106), Chart Suspended? (page C-11)

Argument 1
Chart
Chart

Argument 2
Put Status in
Float Variable
Integer 32 Variable

Continue Chart
Chart CHART_A Chart

Put Status in STATUS Integer 32 Variable
C-38 ioControl Command Reference

C

Continue Timer
Timing Action

Function: To continue a paused timer variable.

Typical Use: Used with Pause Timer command to track total on/off (up/down, fwd/reverse) time.

Details: The timer variable must have been paused with the Pause Timer command. It continues from the
value at which it was paused.

Arguments:

Standard
Example:

OptoScript
Example:

ContinueTimer(Timer)
ContinueTimer(OVEN_TIMER);

This is a procedure command; it does not return a value.

Notes: None

See Also: Start Off-Pulse (page S-96), Stop Timer (page S-102), Pause Timer (page P-1), Set Down Timer
Preset Value (page S-21), Set Up Timer Target Value (page S-86)

Argument 1
Timer
Down Timer Variable
Up Timer Variable

Continue Timer
Timer OVEN_TIMER Down Timer Variable
ioControl Command Reference C-39

Convert Float to String
String Action

Function: To convert a float to a formatted string having a specified length and number of digits to the right
of the decimal.

Typical Use: To print a float or send it to another device using a specific format or length.

Details: • The Length parameter (Argument 2) specifies the final length of the resulting string,
including the decimal point. Leading spaces (character 32) are added if required.

• The Decimals parameter (Argument 3) specifies the number of digits to the right of the
decimal point.

• Rounding occurs whenever digits on the right must be dropped.
• Digits to the left of the decimal point are never dropped.
• If the whole number portion (digits to the left of the decimal plus the decimal itself) of the

resulting string would be larger than its allocated space, the resulting string will be filled
with asterisks to alert you to the problem. For example, if the value to convert is 123.4567
with a Length value of 5 and a Decimals value of 2, the space allocated to the whole
number portion is only three (5 - 2). Since four characters (“123.”) are required, the formatted
number “123.46” will not fit, so “*****” will be moved to the destination string.

• If the declared width of the string variable is less than the specified length, “*****” will be
moved to the destination string.

• Although integers can also be converted, significant rounding errors will occur for
values of 1,000,000 or more.

Arguments:

Standard
Example:

The following example converts a decimal number in variable MY VALUE to a string
(for example, if MY VALUE is 12.3435, the string becomes “12.34”):

OptoScript
Example:

FloatToString(Convert, Length, Decimals, Put Result in)
FloatToString(My_Value, 5, 2, Value_as_String);

This is a procedure command; it does not return a value.

Argument 1
Convert
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Length
Integer 32 Literal
Integer 32 Variable

Argument 3
Decimals
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Result in
String Variable

Convert Float to String
Convert My_Value Float Variable
Length 5 Integer 32 Literal

Decimals 2 Integer 32 Literal
Put Result in Value_as_String String Variable
C-40 ioControl Command Reference

C

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide. For more information on

using strings in OptoScript code, see Chapter 11 of the ioControl User’s Guide.
• Set decimals to zero to get an integer. Normal rounding will occur.

Dependencies: The string variable must be wide enough to hold the resulting formatted string.

See Also: Convert String to Float (page C-52), Convert Number to String (page C-50), Convert Number to
String Field (page C-51)

Convert Hex String to Number
String Action

Function: To convert a hex string value to an integer value.

Typical Use: To accommodate communications where values may be represented by hex strings.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• An empty string results in a value of zero.
• Conversion is not case-sensitive. For example, the strings “FF,” “ff,” “fF,” and “Ff” all convert

to a value of 255.
• Legal hex characters are “0” through “9,” “A” through “F,” and “a” through “f.”
• A string containing an illegal character will be converted up to the point just before the

illegal character. For example, the strings “AG” and “A 123” will both convert to 10 (the
value of “A”).

• Leading spaces in a string convert the result to a zero.

Arguments:

Standard
Example:

OptoScript
Example:

HexStringToNumber(Convert)
Int_Value = HexStringToNumber(String_From_Port);

This is a function command; it returns the converted number. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• If the hex string contains an IEEE float, you must use Convert IEEE Hex String to Number.

See Also: Convert Number to Hex String (page C-48), Convert String to Float (page C-52), Convert String to
Integer 32 (page C-54), Convert IEEE Hex String to Number (page C-42)

Argument 1
Convert
String Literal
String Variable

Argument 2
Put Result in
Float Variable
Integer 32 Variable

Convert Hex String to Number
Convert String_From_Port String Variable

Put Result in Int_Value Integer 32 Variable
ioControl Command Reference C-41

Convert IEEE Hex String to Number
String Action

Function: To convert a hex string representing an IEEE float in native IEEE format to a number.

Typical Use: To retrieve the float value previously stored as hex after using Convert Number to Formatted
Hex String.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• Use between control engines or other computers that use the IEEE format.
• The eight hex characters are converted to four bytes (IEEE float format).
• The hex string must be in Motorola or Big Endian format (most significant byte on the left, in

the least significant address).

Arguments:

Standard
Example:

The following example converts a hex string into a float value. For example, if STRING FROM
PORT contains “418E6666” then MY FLOAT VALUE becomes 17.8.

OptoScript
Example:

IEEEHexStringToNumber(Convert)
MY_FLOAT_VALUE = IEEEHexStringToNumber(STRING_FROM_PORT);

This is a function command; it returns the converted number. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “String Commands” in Chapter 10 of the ioControl User’s Guide.

See Also: Convert Number to Formatted Hex String (page C-46), Convert Hex String to Number (page C-41)

Argument 1
Convert
String Literal
String Variable

Argument 2
Put Result in
Float Variable
Integer 32 Variable

Convert IEEE Hex String to Number
Convert STRING_FROM_PORT String Variable

Put Result in MY_FLOAT_VALUE Float Variable
C-42 ioControl Command Reference

C

Convert Integer 32 to IP Address String
String Action

Function: To convert an integer 32 value to an IP address string.

Typical Use: To convert an IP address stored as an integer into a human-readable string, such as
“10.192.54.155”

Arguments:

Standard
Example:

OptoScript
Example:

Int32ToIpAddressString(Convert, Put Result In)
IpAddressStringToInt32(IP_Integer, IP_String);

This is a function command; it returns the converted string.

Notes: See “String Commands” in Chapter 10 of the ioControl User’s Guide.

See Also: Convert IP Address String to Integer 32 (page C-44)

Argument 1
Convert
Integer 32 Literal
Integer 32 Variable

Argument 2
Put Result in
String Variable

Convert Integer 32 to IP Address String
Convert IP_Integer Integer 32 Variable

Put Result in IP_String String Variable
ioControl Command Reference C-43

Convert IP Address String to Integer 32
String Action

Function: To convert an IP address string value to an integer 32 value.

Typical Use: To convert an IP address stored as a string (for example, “10.192.54.155”) to an integer (in this
example, 0x0AC0369B)

Details: Quotes (“”) are used in OptoScript code, but not in standard ioControl code.

Arguments:

Standard
Example:

OptoScript
Example:

IpAddressStringToInt32(Convert)
IP_Integer = IpAddressStringToInt32(IP_String);

This is a function command; it returns the converted number. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “String Commands” in Chapter 10 of the ioControl User’s Guide.

See Also: Convert Integer 32 to IP Address String (page C-43)

Argument 1
Convert
String Literal
String Variable

Argument 2
Put Result in
Integer 32 Variable

Convert IP Address String to Integer 32
Convert IP_String String Variable

Put Result in IP_Integer Integer 32 Variable
C-44 ioControl Command Reference

C

Convert Mistic I/O Hex String to Float
String Action

Function: Converts a float value represented as an eight-character hex response from an I/O unit to a float
number.

Typical Use: Reading analog values in engineering units from an I/O unit.

Details: • I/O units use integers to represent all numeric values. Float values are handled using a
16-bit signed integer for the whole number part and a 16-bit unsigned integer for the
fractional part. Each count in the fractional part represents 0.000015259. These four bytes
become eight bytes when represented in hex.

• Legal range is -32768 to 32767.

Arguments:

Standard
Example:

OptoScript
Example:

MisticIoHexToFloat(Convert)
Eunit_Value = MisticIoHexToFloat(IO_Response);

This is a function command; it returns the converted float. The returned value can be consumed
by a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: Use Convert Hex String to Number instead when the hex response represents a count.

Dependencies: Use Transmit/Receive Mistic I/O Hex String first.

See Also: Transmit/Receive Mistic I/O Hex String (page T-18), Convert Number to Mistic I/O Hex String
(page C-49), Convert Hex String to Number (page C-41)

Argument 1
Hex String
String Literal
String Variable

Argument 2
Put Result in
Float Variable

Convert Mistic I/O Hex String to Float
Hex String IO_Response String Variable

Put Result in Eunit_Value Float Variable
ioControl Command Reference C-45

Convert Number to Formatted Hex String
String Action

Function: To convert an integer to a formatted hex string having a specified length, or to convert a float to
an eight-byte IEEE hex format.

Typical Uses: • To print a hex number or to send it to another device with a fixed length.

Details: • The Length parameter (Argument 2) specifies the final length of the resulting string.
Leading zeros are added if required.

• You must use a Length of 8 when converting a float or a negative number.
• To send a float value in native IEEE format, set the value of Argument 2 to 8, and use a float

variable or literal. If less than eight characters are used, asterisks appear in the Put Result In
argument, and error -3 (Buffer overrun or invalid length error) appears in the message queue.
Use Convert IEEE Hex String to Number to convert the eight hex characters back to a float.

• If the resulting hex string is wider than the specified length, the string is filled with asterisks
and an error -3 is reported.

• If the declared width of the string variable is less than the specified length, error -3 (Buffer
overrun or invalid length error) appears in the message queue. If the value can be
represented by the string width, the value is stored in the variable. Otherwise, the string is
filled with asterisks.

• If the declared width is not long enough to represent the value, error -23 (Destination string
too short) appears in the message queue, and the string is filled with asterisks.

• Upper case is used for all hex characters; for example, 1,000 decimal is represented as 3E8
rather than 3e8.

Arguments:

Standard
Example:

The following example converts a decimal integer to a hex string. If MY ADDRESS has the value
255, the resulting hex string would be “00FF” because Length is 4. If Length had been 2, the hex
string would have become “FF.”

Argument 1
Convert
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
Length
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
String Variable

Convert Number to Formatted Hex String
Convert My_Address Integer 32 Variable
Length 4 Integer 32 Literal

Put Result in Address_as_Hex String Variable
C-46 ioControl Command Reference

C

OptoScript

Example:
NumberToFormattedHexString(Convert, Length, Put Result in)
NumberToFormattedHexString(My_Address, 4, Address_as_Hex);

This is a procedure command; it does not return a value.

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• Caution: Do not use a float where an integer would suffice. Floats are not automatically

converted to integers with this command.

Queue Errors: -3 = Buffer overrun or invalid length error. If a float value or negative number is used, the string
width must be at least 8.
-23 = Destination string too short. The string width is not long enough to represent the number.

Dependencies: The string variable must be wide enough to hold the hex string.

See Also: Convert Float to String (page C-40), Convert Number to Hex String (page C-48), , Convert Number
to String (page C-50), Convert Number to String Field (page C-51)
ioControl Command Reference C-47

Convert Number to Hex String
String Action

Function: To convert a decimal integer to a hex string.

Typical Uses: • To send an integer value with a predetermined length to another control engine.
• To print a hex representation of a number or to send it to another device.

Details: • Does not add leading zeros or spaces.
• If the declared width of the string variable is less than the resulting hex string length, the

hex string will be filled with asterisks.
• Upper case is used for all hex characters; for example, 1,000 decimal is represented as 3E8

rather than 3e8.
• A floating point number is first rounded to a whole number, then converted to a hex string.

Arguments:

Standard
Example:

The following example converts a number in MY ADDRESS to a hex string
(for example, if MY ADDRESS has the value 256, the hex string becomes “100”):

OptoScript
Example:

NumberToHexString(Convert, Put Result in)
NumberToHexString(My_Address, Address_as_Hex);

This is a procedure command; it does not return a value.

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• Use Convert Number to Formatted Hex String when converting floats that require

formatting.

Dependencies: The string variable must be wide enough to hold the resulting hex string.

See Also: Convert Number to Formatted Hex String (page C-46), Convert Float to String (page C-40),
Convert Number to String (page C-50), Convert Number to String Field (page C-51)

Argument 1
Convert
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
Put Result in
String Variable

Convert Number to Hex String
Convert My_Address Integer 32 Variable

Put Result in Address_as_Hex String Variable
C-48 ioControl Command Reference

C

Convert Number to Mistic I/O Hex String
String Action

Function: Converts a float value to an eight-character hex string using the I/O unit engineering units format.

Typical Use: Sending values in engineering units to an analog I/O unit.

Details: • I/O units use integers to represent all numeric values. Float values are handled using a
16-bit signed integer for the whole number part and a 16-bit unsigned integer for the
fractional part. Each count in the fractional part represents 0.000015259. These four bytes
become eight bytes when represented in hex.

• Legal range is -32768 +32767.

Arguments:

Standard
Example:

OptoScript
Example:

NumberToMisticIoHex(Convert, Put Result in)
NumberToMisticIoHex(EUNIT_VALUE, HEX_VALUE);

This is a procedure command; it does not return a value.

Notes: Use Convert Number to Formatted Hex String when the number represents a count or bit pattern.

See Also: Transmit/Receive Mistic I/O Hex String (page T-18), Convert Mistic I/O Hex String to Float
(page C-45), Convert Number to Formatted Hex String (page C-46)

Argument 1
Number
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Put Result in
String Variable

Convert Number to Mistic I/O Hex String
Number EUNIT_VALUE Float Variable

Put Result in HEX_VALUE String Variable
ioControl Command Reference C-49

Convert Number to String
String Action

Function: To convert a decimal number to a string.

Typical Use: To print a number or send it to another device.

Details: • If the declared width of the string variable is less than the resulting string length, the
resulting string will be filled with asterisks to alert you to the problem.

• Example: 12345 becomes 12345—Note no change for integers.
• Floats will have an exponential format.

Arguments:

Standard
Example:

The following example converts a decimal number in MY_VALUE to a string (for example, if
MY_VALUE is 12.34, the string becomes 1.234e+01; if MY_VALUE is the integer value 1234, the
string becomes 1234):

OptoScript
Example:

NumberToString(Convert, Put Result in)
NumberToString(MY_Value, Value_as_String);

This is a procedure command; it does not return a value.

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• To avoid scientific notation or to have greater control over format, use Convert Float to String

instead.

Dependencies: The string variable must be wide enough to hold the resulting string.

See Also: Convert String to Integer 32 (page C-54), Convert Float to String (page C-40)

Argument 1
Convert
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
Put Result in
String Variable

Convert Number to String
Convert My_Value Float Variable

Put Result in Value_as_String String Variable
C-50 ioControl Command Reference

C

Convert Number to String Field
String Action

Function: To convert a number to a string using a specified minimum length.

Typical Use: To fix the length of an integer before sending it to a serial printer or to another device.

Details: • The resulting string length will be greater than or equal to the length specified in the Length
parameter (Argument 2).

• If the declared width of the string variable is less than the resulting string length, the
resulting string is filled with asterisks.

• A value whose length is less than that specified will have leading spaces added as
necessary, up to a maximum equal to the string width.

• A value whose length is equal to or greater than the specified length will be sent as is.
• A floating point value will have an exponential format.
• Examples (Quotes are used in OptoScript code, but not in standard ioControl code. They are

used here for clarity only):

23456 becomes “ 23456”—There are six digits (one leading space in front of the 2).

0 becomes “ 0”—There are six digits (five leading spaces in front of the 0).

2345678 becomes 2345678—The six-digit specified length is ignored.

Arguments:

Standard
Example:

OptoScript
Example:

NumberToStringField(Convert, Length, Put Result in)
NumberToStringField(Value, 6, Value_as_String);

This is a procedure command; it does not return a value.

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• Use Convert Float to String to better control the resulting format, if desired.

Argument 1
Convert
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
Length
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
String Variable

Convert Number to String Field
Convert Value Integer 32 Variable
Length 6 Integer 32 Literal

Put Result in Value_as_String String Variable
ioControl Command Reference C-51

Dependencies: The string variable must be wide enough to hold the resulting string.

See Also: Convert Number to Formatted Hex String (page C-46), Convert Float to String (page C-40),
Convert Number to String (page C-50), Convert Number to Hex String (page C-48)

Convert String to Float
String Action

Function: To convert a string to a float value.

Typical Use: To accommodate communications or operator entry, since all characters from these sources
are strings.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• Although this command can be used to convert a string to an integer, significant rounding

errors will occur for values of 1,000,000 or more.
• Valid, convertible characters are 0 to 9, the decimal point, and “e” (exponent). Spaces are

also considered valid, although they are not converted. Note in particular that commas are
invalid.

• Strings are analyzed from left to right.
• Spaces divide text blocks within a string.
• If a space appears to the right of a valid text block, the space and all characters to its right

will be ignored. For example, “123 4” and “123.0 X” both convert to 123.
• If an invalid character is found, the string will be converted to 0. For example, “X 22.2 4” and

“1,234 45” both convert to 0, since the X in the first string and the comma in the second are
invalid. Note, however, that “45 1,234” would convert to 45, since the invalid character (“,”)
would be ignored once the valid text block (“45”) was found.

• The following are string-to-float conversion examples:

Arguments:

STRING FLOAT
“” 0

“A12” 0
“123P” 0
“123 P” 123

“123.456” 123.456
“22 33 44” 22

“ 22.11” 22.11
“1,234.00” 0
“1234.00” 1234
“1.23e01” 12.3

Argument 1
Convert
String Literal
String Variable

Argument 2
Put Result in
Float Variable
C-52 ioControl Command Reference

C

Standard
Example:

OptoScript
Example:

StringToFloat(Convert)
Float_Value = StringToFloat(String_from_Port);

This is a function command; it returns the converted float. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “String Commands” in Chapter 10 of the ioControl User’s Guide.

See Also: Convert Float to String (page C-40), Convert String to Integer 32 (page C-54)

Convert String to Float
Convert String_from_Port String Variable

Put Result in Float_Value Float Variable
ioControl Command Reference C-53

Convert String to Integer 32
String Action

Function: To convert a string to an integer value.

Typical Use: To accommodate communications or operator entry, since all characters from these sources
are strings.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• Valid, convertible characters are 0 to 9. Spaces are also considered valid, although they are

not converted. Note in particular that commas are invalid.
• Strings are analyzed from left to right.
• Text that could be read as a float value is truncated to an integer value. For example, “123.6”

is truncated to 123. (To round a float rather than truncating it, do not use this command.
Instead, use Convert String to Float and then use Move to move the float to an integer.)

• Spaces divide text blocks within a string.
• If a space appears to the right of a valid text block, the space and all characters to its right

are ignored. For example, “123 4” and “123.0 X” both convert to 123.
• If an invalid character is found, the string is used up to that character. For example, “X 22 4”

becomes 0, since the first character (X) is invalid. “1,234 45” becomes 1, since the comma is
invalid.

• The following are string-to-integer conversion examples:

Arguments:

Standard
Example:

OptoScript
Example:

StringToInt32(Convert)
Int_Value = StringToInt32(String_from_Port);

This is a function command; it returns the converted integer. The returned value can be consumed
by a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the ioControl User’s Guide for more information.

STRING INTEGER
“” 0

“A12” 0
“123P” 123
“123 P” 123

“123.456” 123
“22 33 44” 22

“ 22.51” 22
“1,234” 1

“1234.00” 1234

Argument 1
Convert
String Literal
String Variable

Argument 2
Put Result in
Integer 32 Variable

Convert String to Integer 32
Convert String_from_Port String Variable

Put Result in Int_Value Integer 32 Variable
C-54 ioControl Command Reference

C

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.

• Avoid alpha characters. Stick with 0 to 9.
• If you need to convert a string to an integer 64 for use with a 64-point digital-only I/O unit,

use the command Convert String to Integer 64.

See Also: Convert String to Float (page C-52), Convert Number to String (page C-50)

Convert String to Integer 64
String Action

Function: To convert a string to an integer 64 value.

Typical Use: Most conversions will be to integer 32 values and use the command Convert String to Integer 32.
Use this command to accommodate communications or operator entry strings that must be
converted to integer 64 values for use with digital-only 64-point I/O units.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• Valid, convertible characters are 0 to 9. Spaces are also considered valid, although they are

not converted. Note in particular that commas are invalid.
• Strings are analyzed from left to right.
• Text that could be read as a float value is truncated to an integer value. For example, “123.6”

is truncated to 123. (To round a float rather than truncating it, do not use this command.
Instead, use Convert String to Float and then use Move to move the float to an integer.)

• Spaces divide text blocks within a string.
• If a space appears to the right of a valid text block, the space and all characters to its right

are ignored. For example, “123 4” and “123.0 X” both convert to 123.
• If an invalid character is found, the string is used up to that character. For example, “X 22 4”

becomes 0, since the first character (X) is invalid. “1,234 45” becomes 1, since the comma is
invalid.

• The following are string-to-integer conversion examples:

Arguments:

String Integer
“” 0

“A12” 0
“123P” 123
“123 P” 123
String Integer

“123.456” 123
“22 33 44” 22
“ 22.51” 22
“1,234” 1

“1234.00” 1234

Argument 1
Convert
String Literal
String Variable

Argument 2
Put Result in
Integer 64 Variable
ioControl Command Reference C-55

Standard
Example:

OptoScript
Example:

StringToInt64(Convert)
Int_Value = StringToInt64(String_from_Port);

This is a function command; it returns the converted integer. The returned value can be consumed
by a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• Avoid alpha characters. Use characters 0 to 9.

See Also: Convert String to Float (page C-52), Convert Number to String (page C-50)

Convert String to Lower Case
String Action

Function: To change any uppercase letters in a string to lower case.

Typical Use: To simplify string matching by making all characters the same case.

Details: Does not affect numbers, blanks, punctuation, etc.

Arguments:

Standard
Example:

OptoScript
Example:

StringToLowerCase(Convert)
StringToLowerCase(IO_COMMAND);

This is a procedure command; it does not return a value.

See Also: Convert String to Upper Case (page C-57)

Convert String to Integer 64
Convert String_from_Port String Variable

Put Result in Int_Value Integer 64 Variable

Argument 1
Convert
String Variable

Convert String to Lower Case
Convert IO_COMMAND String Variable
C-56 ioControl Command Reference

C

Convert String to Upper Case
String Action

Function: To change any lowercase letters in a string to upper case.

Typical Use: To simplify string matching by making all characters the same case.

Details: Does not affect numbers, blanks, punctuation, etc.

Arguments:

Standard
Example:

OptoScript
Example:

StringToUpperCase(Convert)
StringToUpperCase(IO_COMMAND);

This is a procedure command; it does not return a value.

See Also: Convert String to Lower Case (page C-56)

Argument 1
Convert
String Variable

Convert String to Upper Case
Convert IO_COMMAND String Variable
ioControl Command Reference C-57

Copy Current Error to String
Error Handling Action

Function: To copy information about the current error into a string.

Typical Use: To log errors and other information from the message queue.

Details: • Columns of information from the message queue are put into a string variable with the
delimiter you set in Argument 1. Columns are: Error Code, Severity, Chart, Block, Line,
Object, Time, and Date. If the information came from a subroutine, the Chart column shows
the chart that called the subroutine, and the Block column includes the subroutine name in
the format <Sub Name>.Block.

The following sample messages all use a comma as the delimiter:
-534,Info,_INIT_IO,-1,0,sio13,17:19:11,01/03/05

-35,Warning,_INIT_IO,-1,0,ai36_Temp,17:19:21,12/03/04

-12,Error,Process,TableSub.3,2,strTable,08:46:11,09/24/04

-15,Error,Powerup,0,1,(null),10:44:42,12/04/04

User,Warning,Powerup,0,1,custom error,10:39:20,10/19/04

• If there are no errors in the queue, the string variable will be empty.
• If you are in Minimal Debug rather than Full Debug, the Line column will contain a zero.
• Quotes (“”) are used in OptoScript code, but not in standard ioControl code.

Arguments:

Standard
Example:

OptoScript
Example:

CurrentErrorToString(Delimiter, String)
CurrentErrorToString(44, strError);

This is a procedure command; it does not return a value.
Notice that in OptoScript, the integer 32 literal 44 could also be entered as a character constant,
in this case: ','

See Also: Get Error Code of Current Error (page G-52), Clear All Errors (page C-18), Get Error Count
(page G-53), Remove Current Error and Point to Next Error (page R-22)

Argument 1
Delimiter
Integer 32 Literal
Integer 32 Variable

Argument 2
Put Result in
String Variable

Copy Current Error to String
Delimiter 44 Integer 32 Literal

Put Result In strError String Variable
C-58 ioControl Command Reference

C

Copy Date to String (DD/MM/YYYY)
Time/Date Action

Function: To read the date from the control engine’s real-time clock/calendar and put it into a string
variable in the standard European format dd/mm/yyyy, where dd = day (01–31), mm = month
(01–12), and yyyy = year (2000–2099).

Typical Use: To date stamp an event in an ioControl program.

Details: • If the current date is March 1, 2002, this action would place the string “01/03/2002” into the
String parameter (Argument 1).

• The destination string should have a minimum width of ten.

Arguments:

Standard
Example:

OptoScript
Example:

DateToStringDDMMYYYY(String)
DateToStringDDMMYYYY(DATE_STRING);

This is a procedure command; it does not return a value.

Notes: This is a one-time read of the date. If the date changes, you will need to execute the command
again to get the current date.

Queue Error: -44 = String too short.

See Also: Copy Date to String (MM/DD/YYYY) (page C-60), Copy Time to String (page C-61), Set Date
(page S-16), Set Time (page S-83)

Argument 1
To
String Variable

Copy Date to String (DD/MM/YYYY)
To DATE_STRING String Variable
ioControl Command Reference C-59

Copy Date to String (MM/DD/YYYY)
Time/Date Action

Function: To read the date from the control engine’s real-time clock/calendar and put it into a string
variable in the standard United States format mm/dd/yyyy, where mm = month (01–12), dd = day
(01–31), and yyyy = year (2000-2099).

Typical Use: To date stamp an event in an ioControl program.

Details: • If the current date is March 1, 2002, this action would place the string “03/01/2002” into the
String parameter (Argument 1).

• The destination string should have a minimum width of ten.

Arguments:

Standard
Example:

OptoScript
Example:

DateToStringMMDDYYYY(String)
DateToStringMMDDYYYY(DATE_STRING);

This is a procedure command; it does not return a value.

Notes: This is a one-time read of the date. If the date changes, you will need to execute the command
again to get the current date.

Queue Error: -44 = String too short.

See Also: Copy Date to String (DD/MM/YYYY) (page C-59), Copy Time to String (page C-61), Set Date
(page S-16), Set Time (page S-83)

Argument 1
To
String Variable

Copy Date to String (MM/DD/YYYY)
To DATE_STRING String Variable
C-60 ioControl Command Reference

C

Copy Time to String
Time/Date Action

Function: To read the time from the control engine’s real-time clock/calendar and put it into a string
variable in the format hh:mm:ss, where hh = hours (00–23), mm = minutes (00–59), and
ss = seconds (00–59).

Typical Use: To time stamp an event in an ioControl program.

Details: • Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and 11:59:00
p.m. = 23:59:00.

• If the current time is 2:35 p.m., this action would place the string “14:35:00” into the String
parameter (Argument 1).

• The destination string should have a minimum width of eight.

Arguments:

Standard
Example:

OptoScript
Example:

TimeToString(String)
TimeToString(TIME_STRING);

This is a procedure command; it does not return a value.

Notes: • This is a one-time read of the time. If the time changes, you will need to execute the
command again to get the current time.

• Put this command in a small program loop that executes frequently to ensure that the string
always contains the current time.

Queue Error: -44 = String too short.

See Also: Copy Date to String (MM/DD/YYYY) (page C-60), Copy Date to String (MM/DD/YYYY)
(page C-60), Set Date (page S-16), Set Time (page S-83)

Argument 1
To
String Variable

Copy Time to String
To TIME_STRING String Variable
ioControl Command Reference C-61

Cosine
Mathematical Action

Function: To derive the cosine of an angle.

Typical Use: Trigonometric function for computing triangular base of the angle.

Details: • Calculates the cosine of Argument 1 and places the result in Argument 2.
• Argument 1 has a theoretical range of -infinity to +infinity, but is limited by the size of the

argument you pass.
• The range of Argument 2 is -1.0 to 1.0, inclusive.
• The following are examples of cosine calculations (rounded to four decimal places):

Arguments:

Standard
Example:

OptoScript
Example:

Cosine(Of)
COSINE = Cosine(RADIANS);

This is a function command; it returns the cosine. The returned value can be consumed by a
variable (as shown) or by another item, such as a mathematical expression or a control structure.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• To convert units of degrees to units of radians, divide degrees by 57.29578.
• Use Arccosine if the cosine is known and the angle is desired.

See Also: Arccosine (page A-11), Sine (page S-91), Tangent (page T-1)

Radians Degrees Result
0.0 0.0 1.0

0.7854 45 0.7071
1.5708 90 0.0
2.3562 135 0.7071
3.1416 180 -1.0
3.9270 225 -0.7071
4.7124 270 0.0
5.4978 315 0.7071
6.2832 360 1.0

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable

Cosine
Of RADIANS Float Variable

Put Result in COSINE Float Variable
C-62 ioControl Command Reference

D
 D
Decrement Variable
Mathematical Action

Function: To decrease the value specified by 1.

Typical Use: To control countdown loops and other counting applications.

Details: Same as subtracting 1: 9 becomes 8, 0 becomes -1, 22.22 becomes 21.22, etc.

Arguments:

Standard
Example:

OptoScript
Example:

DecrementVariable(Variable)
DecrementVariable(Num_Holes_Left_to_Punch);

This is a procedure command; it does not return a value. This command is equivalent to the
following math expression in OptoScript:
Num_Holes_Left_to_Punch = Num_Holes_Left_to_Punch - 1;

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• Executes faster than subtracting 1, both in standard commands and in OptoScript code.

See Also: Increment Variable (page I-1)

Argument 1
[Value]
Float Variable
Integer 32 Variable
Integer 64 Variable

Decrement Variable
Num_Holes_Left_to_Punch Integer 32 Variable
ioControl Command Reference D-1

Delay (mSec)
Timing Action

Function: To slow the execution of program logic and to release the remaining time of a chart’s time slice.

Typical Use: To cause a chart to give up the remaining time of its time slice.

Details: Units are in milliseconds.

Arguments:

Standard
Example:

OptoScript
Example:

DelayMsec(Milliseconds)
DelayMsec(1);

This is a procedure command; it does not return a value.

Notes: • For readability, use Delay (Sec) for delays longer than 10 seconds.
• When high accuracy is needed, reduce the number of tasks running concurrently.

Queue Errors: -8 = Value less than zero.

See Also: Delay (Sec) (page D-3), Start Off-Pulse (page S-96), Stop Timer (page S-102), Pause Timer
(page P-1), Continue Timer (page C-39)

Argument 1
[Value]
Integer 32 Literal
Integer 32 Variable

Delay (mSec)
1 Integer 32 Literal
D-2 ioControl Command Reference

D

Delay (Sec)
Timing Action

Function: To slow the execution of program logic and to release the remaining time of a chart’s time slice.

Typical Use: To cause a chart to give up the remaining time of its time slice.

Details: Units are in seconds with millisecond resolution.

Arguments:

Standard
Example:

OptoScript
Example:

DelaySec(Seconds)
DelaySec(10.525);

This is a procedure command; it does not return a value.

Notes: • Use Delay (mSec) for delays shorter than 10 seconds.
• When high accuracy is needed, reduce the number of tasks running concurrently.

Queue Errors: -8 = Value less than zero.

See Also: Delay (mSec) (page D-2)

Argument 1
[Value]
Float Literal
Float Variable

Delay (Sec)
10.525 Float Literal
ioControl Command Reference D-3

Disable Communication to All I/O Points
Simulation Action

Function: To disable communication between the program in the control engine and all analog and digital
points.

Typical Use: To disconnect the program from all analog and digital points for simulation and testing.
To force the program in the control engine to read/write internal values (IVALs) rather than
reading/writing to I/O units (XVALs). This command can be used for simulation and for faster
processing of program logic in speed-sensitive applications.

Details: • All analog and digital point communication is enabled by default.
• This command does not affect the points in any way. It only disconnects the program in the

control engine from the points.
• When communication to I/O points is disabled, program actions have no effect.
• When a program reads the value of a disabled point, the last value before the point was

disabled (IVAL) will be returned. Likewise, any attempts by the program to change the value
of an output point will affect only the IVAL, not the actual output point (XVAL). Disabling a
point while a program is running has no effect on the program.

Arguments: None

Standard
Example:

Disable Communication to All I/O Points

OptoScript
Example:

DisableCommunicationToAllIoPoints()
DisableCommunicationToAllIoPoints();

This is a procedure command; it does not return a value.

See Also: Enable Communication to All I/O Points (page E-1)
D-4 ioControl Command Reference

D

Disable Communication to All I/O Units
Simulation Action

Function: Changes a flag in the control engine to indicate that all the I/O units are offline. This stops
communication from the program to the I/O units.

Typical Use: To force the program in the control engine to read/write internal values (IVALs) rather than
reading/writing to I/O units (XVALs). This command can be used for simulation and for faster
processing of program logic in speed-sensitive applications.

Details: • No I/O unit communication errors will be generated by the program while communication to
the I/O units is disabled.

• In Debug mode ioControl can still communicate to the I/O units, since it ignores the disabled
flag.

Arguments: None.

Standard
Example:

Disable Communication to All I/O Units

OptoScript
Example:

DisableCommunicationToAllIoUnits()0
DisableCommunicationToAllIoUnits();

This is a procedure command; it does not return a value.

See Also: Enable Communication to All I/O Units (page E-2)
ioControl Command Reference D-5

Disable Communication to Event/Reaction
Simulation Action

NOTE: This command is for mistic I/O units only.

Function: To disable communication between the program in the controller and the specified
event/reaction.

Typical Use: To disconnect the program from a specified event/reaction for simulation and program testing.

Details: • All event/reaction communication is enabled by default.
• Does not affect the event/reaction at the I/O unit in any way. While communication to the

event/reaction is disabled, any ioControl command that refers to it by name will not affect it
because the command only has access to the IVAL.

• If the event/reaction is disabled and it’s active, reactions will occur. However, the program in
the controller will not be able to read or clear any status bits associated with the
event/reaction until it is enabled (see Enable Communication to Event/Reaction).

Arguments:

Standard
Example:

OptoScript
Example:

DisableCommunicationToEventReaction(Event/Reaction)
DisableCommunicationToEventReaction(ESTOP_BUTTON);

This is a procedure command; it does not return a value.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the ioControl User’s Guide.
• To actually stop an event/reaction, use Disable Scanning for Event.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

See Also: Enable Communication to Event/Reaction (page E-3)

Argument 1
[Value]
Analog Event/Reaction
Digital Event/Reaction

Disable Communication to Event/Reaction
ESTOP_BUTTON_1 Digital Event/Reaction
D-6 ioControl Command Reference

D

Disable Communication to I/O Unit
Simulation Action

Function: To disable communication between the program in the control engine and all points on the I/O
unit.

Typical Uses: • To prohibit the program in the control engine from reading or writing to the I/O unit for
simulation and program testing.

• To gain fast I/O processing. With communication disabled, all logic is executed using values
within the control engine.

Details: • All program references to I/O will be restricted to the use of internal I/O values (IVAL).
• Input IVALs will remain in their current state (unless you change them using Debug mode or

special simulation commands).
• Output IVALs will reflect what the program is instructing the outputs to do.
• Caution: Any outputs that are on may remain on.

Arguments:

Standard
Example:

OptoScript
Example:

DisableCommunicationToIoUnit(I/O Unit)
DisableCommunicationToIoUnit(Vapor_Extraction);

This is a procedure command; it does not return a value.

Notes: • Communication to I/O units is normally disabled using ioControl.
• If I/O units are disabled to speed logic execution, use the following commands in the order

shown:

1. Move I/O Unit to Numeric Table (with I/O unit still disabled): Copies analog output IVALs
updated by program.

Argument 1
[Value]
B100*
B200*
B3000 (Analog)*
B3000 (Digital)*
G4A8R, G4RAX*
G4D16R*
G4D32RS*
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-BRS*

* ioControl Professional only

Disable Communication to I/O Unit
Vapor_Extraction SNAP-UP1-ADS
ioControl Command Reference D-7

2. Get I/O Unit as Binary Value (with I/O unit still disabled): Copies digital output IVALs
updated by program.

3. Enable Communication to I/O Unit: Re-establishes communications.

4. Move Numeric Table to I/O Unit: Writes to the table Moved to above. Updates analog
outputs.

5. Set Digital-64 I/O Unit from MOMO Masks: writes to the value read above. Updates
digital outputs.

6. Move I/O Unit to Numeric Table: Updates analog input IVALs.

7. Get Digital-64 I/O Unit as Binary Value: Updates digital input IVALs.

8. Disable Communication to I/O Unit: Disconnects communications.

9. Program logic . . . (Not for use with commands that access MIN, MAX, AVERAGE,
COUNTS, etc.)

Repeat 1 through 9.

See Also: Enable Communication to I/O Unit (page E-4),
D-8 ioControl Command Reference

D

Disable Communication to Mistic PID Loop
Simulation Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To disable communication between the program in the control engine and the PID.

Typical Use: To disconnect the program from a specified PID for simulation and program testing.

Details: • All PID communication is enabled by default.
• Because the PID loop runs on the I/O unit, independently of the control engine, this

command does not affect the PID in any way. While communication to the PID is disabled,
any ioControl command that refers to it by name will not affect it, because the command will
have access only to the IVAL.

• No changes can be made to the PID by the program in the control engine while the PID is
disabled.

Arguments:

Standard
Example:

OptoScript
Example:

DisableCommunicationToMisticPidLoop(PID Loop)
DisableCommunicationToMisticPidLoop(HEATER_3);

This is a procedure command; it does not return a value.

Notes: To stop updating the PID output, do not use this command. Instead, use Set PID Mode to set the
mode to manual.

See Also: Enable Communication to Mistic PID Loop (page E-5)

Argument 1
[Value]
PID Loop

Disable Communication to Mistic PID Loop
HEATER_3 PID Loop
ioControl Command Reference D-9

Disable Communication to PID Loop
Simulation Action

Function: To disable communication between the program in the control engine and the PID.

Typical Use: To disconnect the program from a specified PID for simulation and program testing.

Details: • All PID communication is enabled by default.
• Because the PID loop runs on the I/O unit, independently of the control engine, this

command does not affect the PID in any way. Even on a SNAP Ultimate brain, the PID runs
on the I/O side, not the control side. While communication to the PID is disabled, any
ioControl command that refers to it by name will not affect it, because the command will
have access only to the IVAL.

• No changes can be made to the PID by the program in the control engine while the PID is
disabled.

Arguments:

Standard
Example:

OptoScript
Example:

DisableCommunicationToPidLoop(PID Loop)
DisableCommunicationToPidLoop(HEATER_3);

This is a procedure command; it does not return a value.

Notes: To stop updating the PID output, do not use this command. Instead, use Set PID Mode to set the
mode to manual.

See Also: Enable Communication to PID Loop (page E-6), Set PID Mode (page S-70)

Argument 1
[Value]
PID Loop

Disable Communication to PID Loop
HEATER_3 PID Loop
D-10 ioControl Command Reference

D

Disable Communication to Point
Simulation Action

Function: To disable communication between the program in the control engine and an individual analog
or digital point.

Typical Use: To disconnect the program from a specified analog or digital point for simulation and testing.

Details: • All analog and digital point communication is enabled by default.
• This command does not affect the point in any way. It only disconnects the program in the

control engine from the point.
• When communication to a point is disabled, program actions have no effect.
• When a program reads the value of a disabled point, the last value before the point was

disabled (IVAL) will be returned. Likewise, any attempts by the program to change the value
of an output point will affect only the IVAL, not the actual output point (XVAL). Disabling a
point while a program is running has no effect on the program.

Arguments:

Standard
Example:

OptoScript
Example:

DisableCommunicationToPoint(Point)
DisableCommunicationToPoint(TANK_LEVEL);

This is a procedure command; it does not return a value.

Notes: • Use Turn Off instead if the objective is to shut off a digital output.
• Disabling a point is ideal for a startup situation, since the program thinks it is reading an

input or updating an output as it normally would.
• Use the IVAL field in Debug mode to change the value of an input.
• Use the XVAL field in Debug mode to change the value of an output.

See Also: Enable Communication to Point (page E-7), I/O Point Communication Enabled? (page I-2)

Argument 1
[Value]
Analog Input
Analog Output
Digital Input
Digital Output

Disable Communication to Point
TANK_LEVEL Analog Input
ioControl Command Reference D-11

Disable Event/Reaction Group
Simulation Action

NOTE: This command is for mistic I/O units only.

Function: Changes a flag internal to the controller to indicate that the event/reaction group is offline.
This causes communication from the program to the event/reaction group to cease.

Typical Use: To force the program in the controller to read/write internal values (IVALs) rather than
reading/writing to I/O units (XVALs). This can be used for simulation.

Details: • No I/O unit communication errors will be generated by the program while communication to
the event/reaction group is disabled.

• In Debug mode ioControl can still communicate to the event/reaction group since it ignores
the disabled flag.

Arguments:

Standard
Example:

OptoScript
Example:

DisableEventReactionGroup(E/R Group)
DisableEventReactionGroup(ER_E_STOP_GROUP_A);

This is a procedure command; it does not return a value.

Notes: This command has no effect on the operation of the event/reaction group at the I/O unit.

See Also: Enable Event/Reaction Group (page E-8)

Argument 1
[Value]
Event/Reaction Group

Disable Event/Reaction Group
Event/Reaction Group ER_E_STOP_GROUP_A
D-12 ioControl Command Reference

D

Disable I/O Unit Causing Current Error
Error Handling Action

Function: To disable communication between the program in the control engine and all points on the I/O
unit if the I/O unit generated the top queue error.

Typical Use: Most I/O unit errors cause the unit to be automatically disabled is posted. This command can be
used in an error handling chart to make sure an I/O unit causing an error is disabled.

Details: The control engine generates a error in the message queue whenever an I/O unit does not
respond. When this happens, all further communication to the I/O unit is disabled to ensure that
communication to other I/O units does not slow down.

Arguments: None.

Standard
Example:

Disable I/O Unit Causing Current Error

OptoScript
Example:

DisableIoUnitCausingCurrentError()
DisableIoUnitCausingCurrentError();

This is a procedure command; it does not return a value.

Notes: • This command is typically used in an error handling chart.
• Always use Error on I/O Unit? to determine if the top error in the message queue is an I/O

unit error before using this command, since the error could be caused by something else.
• Always use Remove Current Error and Point to Next Error after using this command.

Dependencies: For this command to have any effect, the top error in the queue must be an error generated by an
I/O unit.

Queue Errors: -29 = The current error in the message queue is not an I/O error.

See Also: Enable I/O Unit Causing Current Error (page E-9), Error on I/O Unit? (page E-20)
ioControl Command Reference D-13

Disable Mistic PID Output
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Function: To prevent the PID from updating its associated analog output channel.

Typical Use: To allow manual changes to the analog output channel associated with the PID without
disturbing the PID and without interference by the PID.

Details: • A manually set output value will remain unchanged until it is either changed again manually
or the PID output is enabled. When the PID output is enabled, any necessary output
adjustments will be made to the current value. This is a bumpless operation.

• Clears bit 5 of the PID control word.

Arguments:

Standard
Example:

OptoScript
Example:

DisableMisticPidOutput(Of PID Loop)
DisableMisticPidOutput(Extruder_Zone08);

This is a procedure command; it does not return a value.

Notes: • This command is quite useful in presetting a PID output before activation or forcing a PID
output to off.

• The PID calculation is ongoing while the PID output is “disabled.” The PID has no knowledge
that its connection to the associated analog output channel has been disconnected.

See Also: Enable Mistic PID Output (page E-10)

Argument 1
Of PID Loop
PID Loop

Disable Mistic PID Output
Of PID Loop Extruder_Zone08 PID Loop
D-14 ioControl Command Reference

D

Disable Mistic PID Output Tracking in Manual Mode
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Function: To prevent the PID output from tracking the PID input while in manual mode.

Typical Use: To put the PID output back to normal mode.

Details: • Factory default is PID output tracking disabled.
• When PID output tracking is disabled the PID output will not track the input while in manual

mode. The PID output will remain unchanged by the PID calculation while in manual mode.
• Clears bit 4 of the PID control word.

Arguments:

Standard
Example:

OptoScript
Example:

DisableMisticPidOutputTrackingInManualMode(On PID Loop)
DisableMisticPidOutputTrackingInManualMode(Extruder_Zone08);

This is a procedure command; it does not return a value.

Notes: • This command is best used in the Powerup chart.
• The effects of this command can be stored at the I/O unit permanently by using Write I/O

Unit Configuration to EEPROM.

See Also: Enable Mistic PID Output Tracking in Manual Mode (page E-11), Write I/O Unit Configuration to
EEPROM (page W-2)

Argument 1
On PID Loop
PID Loop

Disable Mistic PID Output Tracking in Manual Mode
On PID Loop Extruder_Zone08 PID Loop
ioControl Command Reference D-15

Disable Mistic PID Setpoint Tracking in Manual Mode
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Function: To prevent the PID setpoint from tracking the PID input while in manual mode.

Typical Use: To prevent the setpoint from being altered automatically while in manual mode.

Details: • Factory default is PID setpoint tracking enabled.
• When PID setpoint tracking is disabled the setpoint will not be altered by the PID at the I/O

unit. This may be the most desirable state because it does not disturb the setpoint.
• Clears bit 3 of the PID control word.

Arguments:

Standard
Example:

OptoScript
Example:

DisableMisticPidSetpointTrackingInManualMode(On PID Loop)
DisableMisticPidSetpointTrackingInManualMode(Extruder_Zone08);

This is a procedure command; it does not return a value.

Notes: • This command is best used in the Powerup chart.
• The effects of this command can be stored at the I/O unit permanently by using Write I/O

Unit Configuration to EEPROM.

See Also: Enable Mistic PID Setpoint Tracking in Manual Mode (page E-12), Write I/O Unit Configuration
to EEPROM (page W-2)

Argument 1
On PID Loop
PID Loop

Disable Mistic PID Setpoint Tracking in Manual Mode
On PID Loop Extruder_Zone08 PID Loop
D-16 ioControl Command Reference

D

Disable Scanning for All Events
Event/Reaction Action

Function: To deactivate all event/reactions on the specified I/O unit.

Typical Use: To shut off all event/reactions during a planned shutdown or an emergency stop.

Details: Disables the scanning of all event/reactions, directing the I/O unit to stop looking for any events.
No logic is executed; no reaction occurs.

Arguments:

Standard
Example:

OptoScript
Example:

DisableScanningForAllEvents(On I/O Unit)
DisableScanningForAllEvents(Overtemp_Sensors);

This is a procedure command; it does not return a value.

Notes: To stop a specific event/reaction, use Disable Scanning for Event.

Dependencies: Event/reactions are not supported on simple I/O units.

See Also: Disable Scanning for Event (page D-18), Enable Scanning for Event (page E-14), Enable Scanning
for All Events (page E-13)

Argument 1
On I/O Unit
B100
B200
B3000 (Analog)
B3000 (Digital)
G4A8R, G4RAX
G4D16R
SNAP-BRS

Disable Scanning for All Events
On I/O Unit Overtemp_Sensors G4A8R, G4RAX
ioControl Command Reference D-17

Disable Scanning for Event
Event/Reaction Action

Function: To deactivate a specific event/reaction.

Typical Use: To shut off a specific event/reaction during a planned shutdown or an emergency stop.

Details: Disables the scanning of an event/reaction, directing the I/O unit to stop looking for the event.
No logic is executed; no reaction occurs.

Arguments:

Standard
Example:

OptoScript
Example:

DisableScanningForEvent(Event/Reaction)
DisableScanningForEvent(ESTOP_BUTTON_1);

This is a procedure command; it does not return a value.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the ioControl User’s Guide.
• To disable all event/reactions, use Disable Scanning for All Events.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on simple I/O units.

See Also: Disable Scanning for All Events (page D-17), Enable Scanning for Event (page E-14), Enable
Scanning for All Events (page E-13)

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction

Disable Scanning for Event
Event/Reaction ESTOP_BUTTON_1 Analog Event/Reaction
D-18 ioControl Command Reference

D

Disable Scanning of Event/Reaction Group
Event/Reaction Action

NOTE: This command is for mistic I/O units only.

Function: Stops all event/reactions in the specified group.

Typical Use: To stop scanning all event/reactions in the specified group with one command rather than issuing
a separate command to stop each one.

Details: There can be up to 16 event/reaction groups, each containing as many as 16 event/reactions. If
all related event/reactions are in the same group, this command could be quite useful.

Arguments:

Standard
Example:

OptoScript
Example:

DisableScanningOfEventReactionGroup(E/R Group)
DisableScanningOfEventReactionGroup(ER_E_STOP_GROUP_A);

This is a procedure command; it does not return a value.

See Also: Enable Scanning of Event/Reaction Group (page E-15)

Argument 1
Event/Reaction Group
Event/Reaction Group

Disable Scanning of Event/Reaction Group
Event/Reaction Group ER_E_STOP_GROUP_A
ioControl Command Reference D-19

Divide
Mathematical Action

Function: To divide two numerical values.

Typical Use: To perform a standard division action.

Details: • Divides Argument 1 by Argument 2 and places the result in Argument 3.
• Argument 3 can be the same as either of the first two arguments (unless they are read-only,

such as analog inputs), or it can be a completely different argument.
• If Argument 2 is 0, an error -15 (divide by zero) is added to the message queue.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the / operator.
Half_Distance = Total_Distance / 2.0;

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide. For more
information on mathematical expressions in OptoScript code, see Chapter 11 of the
ioControl User’s Guide.

• Avoid divide-by-zero errors by checking Argument 2 before doing the division to be sure it
does not equal zero. Use VARIABLE TRUE? (if it’s True, it’s not zero) or Test Not Equal
(to zero).

• Speed Tip: Use Bit Shift instead of Divide for integer math when the divisor is 2, 4, 8, 16, 32,
64, etc.

Queue Errors: -15 = Divide by zero.

See Also: Modulo (page M-5), Multiply (page M-25), Bit Shift (page B-15)

Argument 1
[Value]
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
By
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable

Divide
Total_Distance Float Variable

By 2.0 Float Literal
Put Result in Half_Distance Float Variable
D-20 ioControl Command Reference

D

Down Timer Expired?
Timing Condition

Function: To check if a down timer has expired (reached zero).

Typical Use: Used to measure a time interval with good precision. Better than time delay commands for delays
within looping charts.

Details: When a down timer has reached zero, it is considered expired.

Arguments:

Standard
Example:

OptoScript
Example:

HasDownTimerExpired(Down Timer)
if (HasDownTimerExpired(OVEN_TIMER)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “Timing Commands” in Chapter 10 of the ioControl User’s Guide for more information on
using timer commands.

See Also: Start Off-Pulse (page S-96), Stop Timer (page S-102), Continue Timer (page C-39), Pause Timer
(page P-1), Set Down Timer Preset Value (page S-21), Delay (Sec) (page D-3), Delay (mSec)
(page D-2)

Argument 1
Down Timer
Down Timer Variable

Down Timer Expired?
Down Timer OVEN_TIMER Down Timer Variable
ioControl Command Reference D-21

D-22 ioControl Command Reference

E
 E
Enable Communication to All I/O Points
Simulation Action

Function: To enable communication between the program in the control engine and all analog and digital
points.

Typical Use: To re-connect the program to all analog and digital points after simulation and testing.

Details: All analog and digital point communication is enabled by default.

Arguments: None

Standard
Example:

Enable Communication to All I/O Points

OptoScript
Example:

EnableCommunicationToAllIoPoints()
EnableCommunicationToAllIoPoints();

This is a procedure command; it does not return a value.

See Also: Disable Communication to All I/O Points, I/O Point Communication Enabled?
ioControl Command Reference E-1

Enable Communication to All I/O Units
Simulation Action

Function: Changes a flag in the control engine to indicate that all the I/O units are online. This allows
normal communication from the program to the I/O units.

Typical Use: To cause the program in the control engine to attempt to read/write to I/O units (XVALs) rather
than use internal values (IVALs). Very useful to re-establish communication with all I/O units that
have just been turned on without having to specify their name.

Details: Sets the Enabled flag which allows the next program reference to the I/O unit to attempt to
communicate with the I/O unit.

Arguments: None.

Standard
Example:

Enable Communication to All I/O Units

OptoScript
Example:

EnableCommunicationToAllIoUnits()
EnableCommunicationToAllIoUnits();

This is a procedure command; it does not return a value.

Notes: • Can be used in a chart that executes periodically to automatically bring I/O units that have
just been turned on back online.

• Use of this command periodically within a program will prevent the disabling of
communication to any point or any I/O unit by any means.

See Also: Disable Communication to All I/O Units
E-2 ioControl Command Reference

E

Enable Communication to Event/Reaction
Simulation Action

NOTE: This command is for mistic I/O units only.

Function: To enable communication between the program in the controller and the specified
event/reaction.

Typical Use: To reconnect the program to a specified event/reaction after simulation and program testing.

Details: • All event/reaction communication is enabled by default.
• Does not affect the event/reaction at the I/O unit in any way.

Arguments:

Standard
Example:

OptoScript
Example:

EnableCommunicationToEventReaction(Event/Reaction)
EnableCommunicationToEventReaction(ESTOP_BUTTON_1);

This is a procedure command; it does not return a value.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the ioControl User’s Guide.
• To enable all event/reactions, use Enable Scanning for All Events.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

See Also: Disable Communication to Event/Reaction, Enable Scanning for All Events

Argument 1
[Value]
Analog Event/Reaction
Digital Event/Reaction

Enable Communication to Event/Reaction
ESTOP_BUTTON_1 Analog Event/Reaction
ioControl Command Reference E-3

Enable Communication to I/O Unit
Simulation Action

Function: To enable communication between the program in the control engine and all points on the I/O
unit.

Typical Use: To re-establish communication between the control engine and the I/O unit after it was
automatically or manually disabled.

Details: • The control engine attempts to communicate with the I/O unit. If the communication
succeeds, all points will be configured. Counters will have to be restarted under program
control.

• If this command fails because the I/O unit specified is still not responding, a new error will
be added to the bottom of the message queue.

Arguments:

Standard
Example:

OptoScript
Example:

EnableCommunicationToIoUnit(I/O Unit)
EnableCommunicationToIoUnit(Vapor_Extraction);

This is a procedure command; it does not return a value.

Notes: This command is sometimes useful for debugging and/or system startup.

Queue Errors: -37 = Timeout on lock
-58 = No data received.

See Also: Disable Communication to I/O Unit

Argument 1
[Value]
B100*
B200*
B3000 (Analog)*
B3000 (Digital)*
G4A8R, G4RAX*
G4D16R*
G4D32RS*
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2
SNAP-BRS*

* ioControl Professional only

Enable Communication to I/O Unit
Vapor_Extraction SNAP-UP1-ADS
E-4 ioControl Command Reference

E

Enable Communication to Mistic PID Loop
Simulation Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To enable communication between the program in the control engine and the PID.

Typical Use: To reconnect the program to a specified PID after simulation or program testing.

Details: • All PID communication is enabled by default.
• Because the PID loop runs on the I/O unit, independently of the control engine, this

command does not affect the PID in any way. Even on a SNAP Ultimate brain, the PID runs
on the I/O side, not the control side. While communication to the PID is enabled, any
ioControl command that refers to it by name will have full access.

Arguments:

Standard
Example:

OptoScript
Example:

EnableCommunicationToMisticPidLoop(PID Loop)
EnableCommunicationToMisticPidLoop(HEATER_3);

This is a procedure command; it does not return a value.

See Also: Disable Communication to Mistic PID Loop

Argument 1
[Value]
PID Loop

Enable Communication to Mistic PID Loop
HEATER_3 PID Loop
ioControl Command Reference E-5

Enable Communication to PID Loop
Simulation Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To enable communication between the program in the control engine and the PID.

Typical Use: To reconnect the program to a specified PID after simulation or program testing.

Details: • All PID communication is enabled by default.
• Because the PID loop runs on the I/O unit, independently of the control engine, this

command does not affect the PID in any way. Even on a SNAP Ultimate brain, the PID runs
on the I/O side, not the control side. While communication to the PID is enabled, any
ioControl command that refers to it by name will have full access.

Arguments:

Standard
Example:

OptoScript
Example:

EnableCommunicationToPidLoop(PID Loop)
EnableCommunicationToPidLoop(HEATER_3);

This is a procedure command; it does not return a value.

See Also: Disable Communication to Mistic PID Loop

Argument 1
[Value]
PID Loop

Enable Communication to PID Loop
HEATER_3 PID Loop
E-6 ioControl Command Reference

E

Enable Communication to Point
Simulation Action

Function: To enable communication between the program in the control engine and an individual analog or
digital point.

Typical Use: To reconnect the program to a specified analog or digital point after simulation or testing.

Details: • All analog and digital point communication is enabled by default.
• This command does not affect the point in any way. It only connects the program in the

control engine with the point.
• When communication to a point is enabled, program actions again take effect.
• When a program reads the value of an enabled input point, the current value of the point

(XVAL) will be returned to the program (IVAL). Likewise, an enabled output point will be
updated when the program writes a value. The XVAL and IVAL will match at this time.

Arguments:

Standard
Example:

OptoScript
Example:

EnableCommunicationToPoint(Point)
EnableCommunicationToPoint(TANK_LEVEL);

This is a procedure command; it does not return a value.

Argument 1
[Value]
Analog Input
Analog Output
Digital Input
Digital Output

Enable Communication to Point
TANK_LEVEL Analog Input
ioControl Command Reference E-7

Notes: • Use Turn On instead to turn on digital output.
• Use this command to enable an analog or digital point previously disabled by the Disable

Communication to Point command.

See Also: Disable Communication to Point, I/O Point Communication Enabled?

Enable Event/Reaction Group
Simulation Action

NOTE: This command is for mistic I/O units only.

Function: Changes a flag internal to the controller to indicate that the event/reaction group is online.
This allows normal communication from the program to the event/reaction group in the I/O unit.

Typical Use: To re-enable communication from the program in the controller to the event/reaction group in the
I/O unit after it was disabled using Disable Event/Reaction Group.

Details: Sets the event/reaction group Enabled flag which allows the next program reference to anything
in that group to attempt to communicate with the I/O unit.

Arguments:

Standard
Example:

OptoScript
Example:

EnableEventReactionGroup(E/R Group)
EnableEventReactionGroup(ER_E_STOP_GROUP_A);

This is a procedure command; it does not return a value.

Notes: This command has no affect on the operation of the event/reaction group at the I/O unit.

See Also: Disable Event/Reaction Group

Argument 1
[Value]
Event/Reaction Group

Enable Event/Reaction Group
ER_E_STOP_GROUP_A
E-8 ioControl Command Reference

E

Enable I/O Unit Causing Current Error
Error Handling Action

Function: To enable communication between the program in the control engine and all points on the I/O
unit if the top queue error was caused by an I/O unit.

Typical Use: To re-establish communication between the control engine and the I/O unit after it was
automatically or manually disabled.

Details: • The control engine generates a queue error whenever an I/O unit does not respond. When
this happens, all further communication to the I/O unit is disabled to ensure that
communication to other I/O units does not slow down. This may be undesirable in some
cases. This command can be used to re-establish communication.

• If this command fails because the I/O unit specified is still not responding, a new error will
be added to the bottom of the message queue.

Arguments: None.

Standard
Example:

Enable I/O Unit Causing Current Error

OptoScript
Example:

EnableIoUnitCausingCurrentError()
EnableIoUnitCausingCurrentError();

This is a procedure command; it does not return a value.

Notes: • This command is typically used in an error handling chart.
• Always use Error on I/O Unit? to determine if the top error in the message queue is an I/O

unit error before using this command.
• Always use Remove Current Error and Point to Next Error after using this command.

Dependencies: For this command to have any effect, the top error in the queue must have been caused by an I/O
unit.

Queue Errors: -29 = The current error in the message queue is not an I/O error.
-37 = Timeout on lock.

See Also: Disable I/O Unit Causing Current Error, Error on I/O Unit?
ioControl Command Reference E-9

Enable Mistic PID Output
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Function: To enable the PID to update its associated analog output channel.

Typical Use: To reconnect the PID with its associated analog output channel after manual changes were made
to the analog output channel via program or debugger.

Details: • A manually set output value will remain unchanged until it is either changed again manually
or the PID output is enabled. When the PID output is enabled, any necessary output
adjustments will be made to the current value. This is a bumpless operation.

• Sets bit 5 of the PID control word.

Arguments:

Standard
Example:

OptoScript
Example:

EnableMisticPidOutput(On PID Loop)
EnableMisticPidOutput(EXTRUDER_ZONE08);

This is a procedure command; it does not return a value.

Notes: The PID calculation is ongoing while the PID output is “disabled.” The PID has no knowledge that
its connection to the associated analog output channel has been disconnected.

See Also: Disable Mistic PID Output

Argument 1
On PID Loop
PID Loop

Enable Mistic PID Output
On PID Loop EXTRUDER_ZONE08 PID Loop
E-10 ioControl Command Reference

E

Enable Mistic PID Output Tracking in Manual Mode
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Function: To cause the PID output to track the PID input while in manual mode.

Typical Use: As a non-PID related signal converter.

Details: • Factory default is PID output tracking disabled.
• When PID output tracking is enabled the PID output will track the input while in manual

mode. This is useful as a signal converter where the input is a temperature sensor for
example and the output is 0–10 volts.

• Sets bit 4 of the PID control word.

Arguments:

Standard
Example:

OptoScript
Example:

EnableMisticPidOutputTrackingInManualMode(On PID Loop)
EnableMisticPidOutputTrackingInManualMode(EXTRUDER_ZONE08);

This is a procedure command; it does not return a value.

Notes: • This command is best used in the Powerup chart.
• The effects of this command can be stored at the I/O unit permanently by using Write I/O

Unit Configuration to EEPROM.

See Also: Disable Mistic PID Output Tracking in Manual Mode, Write I/O Unit Configuration to EEPROM

Argument 1
On PID Loop
PID Loop

Enable Mistic PID Output Tracking in Manual Mode
On PID Loop EXTRUDER_ZONE08 PID Loop
ioControl Command Reference E-11

Enable Mistic PID Setpoint Tracking in Manual Mode
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Function: To cause the PID setpoint to track the PID input while in manual mode.

Typical Use: To prevent a “bump” on the PID output when switching from manual to auto mode.

Details: • Factory default is PID setpoint tracking enabled.
• When PID setpoint tracking is enabled the setpoint will follow the PID input to ensure zero

error. Therefore, when switching from manual to auto, the PID output will not change. This is
called a “bumpless transfer.”

• This may not be the most desirable state because the setpoint is altered, which means the
setpoint must be changed back to where it was, which will cause a bump in the PID output.

• Sets bit 3 of the PID control word.

Arguments:

Standard
Example:

OptoScript
Example:

EnableMisticPidSetpointTrackingInManualMode(On PID Loop)
EnableMisticPidSetpointTrackingInManualMode(EXTRUDER_ZONE08);

This is a procedure command; it does not return a value.

Notes: • This command is best used in the Powerup chart.
• The effects of this command can be stored at the I/O unit permanently by using Write I/O

Unit Configuration to EEPROM.

See Also: Disable Mistic PID Setpoint Tracking in Manual Mode, Write I/O Unit Configuration to EEPROM

Argument 1
On PID Loop
PID Loop

Enable Mistic PID Setpoint Tracking in Manual Mode
On PID Loop EXTRUDER_ZONE08 PID Loop
E-12 ioControl Command Reference

E

Enable Scanning for All Events
Event/Reaction Action

NOTE: This command is for mistic I/O units only.

Function: To activate all event/reactions on the specified I/O unit.

Typical Use: To reactivate all event/reactions after a planned shutdown or an emergency stop.

Details: Whenever scanning for event/reactions is started, all events found to be True on the first scan
will be considered to have just occurred. Therefore, the reactions will follow.

Arguments:

Standard
Example:

OptoScript
Example:

EnableScanningForAllEvents(On I/O Unit)
EnableScanningForAllEvents(Overtemp_Sensors);

This is a procedure command; it does not return a value.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the ioControl User’s Guide.
• To activate a specific event/reaction, use Enable Scanning for Event.
• Normally used after Disable Scanning for All Events.

Dependencies: Event/reactions are not supported on simple I/O units.

See Also: Disable Scanning for Event, Enable Scanning for Event, Disable Scanning for All Events

Argument 1
On I/O Unit
B100
B200
B3000 (Analog)
B3000 (Digital)
G4A8R, G4RAX
G4D16R

Enable Scanning for All Events
On I/O Unit Overtemp_Sensors G4D16R
ioControl Command Reference E-13

Enable Scanning for Event
Event/Reaction Action

Function: To activate a specific event/reaction.

Typical Use: To reactivate a specific event/reaction after a planned shutdown.

Details: If the event is found to be True when scanning for an event/reaction is started, the reaction will
occur.

Arguments:

Standard
Example:

OptoScript
Example:

EnableScanningForEvent(Event/Reaction)
EnableScanningForEvent(Acid_Tank_1_High_Level);

This is a procedure command; it does not return a value.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the ioControl User’s Guide.
• To activate all event/reactions, use Enable Scanning for All Events.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on simple I/O units.

See Also: Enable Scanning for All Events

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction

Enable Scanning for Event
Event/Reaction Acid_Tank_1_High_Level Digital Event/Reaction
E-14 ioControl Command Reference

E

Enable Scanning of Event/Reaction Group
Event/Reaction Action

NOTE: This command is for mistic I/O units only.

Function: Starts all event/reactions in the specified group.

Typical Use: To start scanning all event/reactions in the specified group with one command rather than
issuing a separate command to start each one.

Details: There can be up to 16 event/reaction groups, each containing as many as 16 event/reactions. If
all related event/reactions are in the same group, this command could be quite useful.

Arguments:

Standard
Example:

OptoScript
Example:

EnableScanningOfEventReactionGroup()
EnableScanningOfEventReactionGroup(ER_E_STOP_GROUP_A);

This is a procedure command; it does not return a value.

See Also: Disable Scanning of Event/Reaction Group

Argument 1
Event/Reaction Group
Event/Reaction Group

Enable Scanning of Event/Reaction Group
Event/Reaction Group ER_E_STOP_GROUP_A
ioControl Command Reference E-15

Equal?
Logical Condition

Function: To determine the equality of two values.

Typical Use: To branch program logic based on the sequence number of the process.

Details: • Determines if Argument 1 is equal to Argument 2. Examples:

• Evaluates True if both values are the same, False otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the == operator.
if (BATCH_STEP == 4) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• In OptoScript code, the == operator has many uses. For more information on comparison

operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.
• When testing floats or analog values, use either Greater Than or Equal? or Less Than or

Equal? since exact matches are rare.
• Use Within Limits? to test for an approximate match.
• To test for inequality, use either Not Equal? or the False exit.

See Also: Greater? Less? Not Equal? Greater Than or Equal? Less Than or Equal? Within Limits?

Argument 1 Argument 2 Result
-1 -1 True
-1 1 False

22.22 22.22 True
22.22 22.221 False

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
To
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Is BATCH_STEP Integer 32 Variable
Equal?

To 4 Integer 32 Literal
E-16 ioControl Command Reference

E

Equal to Numeric Table Element?
Logical Condition

Function: To determine if a numeric value is exactly equal to the specified value in a float or integer table.

Typical Use: To perform lookup table matching.

Details: • Determines if one value (Argument 1) is equal to another (a value at index Argument 2 in
float or integer table Argument 3). Examples:

• Evaluates True if both values are exactly the same, False otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the == operator.
if (THIS_READING == TABLE_OF_READINGS[TABLE_INDEX]) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• In OptoScript code, the == operator has many uses. For more information on comparison

operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.
• When testing floats or analog values, use either Greater Than or Equal to Numeric Table

Element? or Less Than Or Equal To Numeric Table Element? since exact matches are rare.
• To test for inequality, use either Not Equal to Numeric Table Element? or the False exit.

Queue Errors: -12 = Invalid table index value—index was negative or greater than the table size.

See Also: Greater Than or Equal To Numeric Table Element?, Less Than or Equal to Numeric Table Element?

Value 1 Value 2 Result
0.0 0.0 True

0.0001 0.0 False
-98.765 -98.765 True
-32768 -32768 True
2222 2222 True

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
At Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Is THIS_READING Float Variable
Equal to Numeric Table Element?

At Index TABLE_INDEX Integer 32 Variable
Of Table TABLE_OF_READINGS Float Table
ioControl Command Reference E-17

Erase Files in Permanent Storage
Control Engine Action

Function: To delete the files in flash memory.

Typical Use: To delete files in flash memory that are no longer needed.

Details: • This command deletes ALL files in the brain’s or controller’s flash memory. However,
firmware files, strategy files, and point configuration data are not affected. Files and folders
in the file system in RAM are not deleted.

• It is not possible to delete only some files in flash memory.
• To determine what files are in flash memory and RAM, use ioManager. See the instructions

in Opto 22 form #1440, the ioManager User’s Guide.

Arguments:

Standard
Example:

OptoScript
Example:

EraseFilesInPermanentStorage()
EraseFilesInPermanentStorage()

This is a function command; it always returns a zero.

Notes: • See “Control Engine Commands” in Chapter 10 of the ioControl User’s Guide.
• This command always returns a zero.

See Also: Save Files To Permanent Storage, Load Files From Permanent Storage

Argument 1
Put Status In
Integer 32 Variable

Erase Files in Permanent Storage
Put Status In Status Integer 32 Variable
E-18 ioControl Command Reference

E

Error?
Error Handling Condition

Function: To determine if there is an error in the message queue.

Typical Use: To determine if further error handling should be performed, for example, in an error handling
chart.

Details: Evaluates True if there is an error in the message queue, False otherwise.

Arguments: None.

Standard
Example:

Error?

OptoScript
Example:

IsErrorPresent()
if (IsErrorPresent()) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Error Handling Commands” in Chapter 10 of the ioControl User’s Guide.
• Use Error on I/O Unit? to determine if it is an I/O related error.
• Use Debug mode to view the message queue for detailed information.

See Also: Error on I/O Unit?
ioControl Command Reference E-19

Error on I/O Unit?
Error Handling Condition

Function: To determine if the top error in the message queue is an I/O-related error.

Typical Use: To determine if further error handling for I/O units should be performed, for example, in an error
handling chart.

Details: Evaluates True if the current error in the message queue is an I/O unit error, False otherwise.

Arguments: None.

Standard
Example:

Error on I/O Unit?

OptoScript
Example:

IsErrorOnIoUnit()
if (IsErrorOnioUnit()) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Error Handling Commands” in Chapter 10 of the ioControl User’s Guide.
• Use Caused an I/O Unit Error? to determine which I/O unit caused the error.
• Use Debug mode to view the message queue for detailed information.

See Also: Caused an I/O Unit Error?, Remove Current Error and Point to Next Error, Error?, Get ID of Block
Causing Current Error, Get Line Causing Current Error, Get Name of Chart Causing Current Error,
Get Name of I/O Unit Causing Current Error
E-20 ioControl Command Reference

E

Event Occurred?
Event/Reaction Condition

NOTE: This command is for mistic I/O units only.

Function: To determine if a specific event has occurred.

Typical Use: To determine which event caused a particular reaction.

Details: • Evaluates True if the specified event/reaction has occurred, False if it has not.
• When the event occurs, its event latch is set. It will remain set until cleared with Clear Event

Latch.

Arguments:

Standard
Example:

OptoScript
Example:

HasEventOccurred(Event/Reaction)
if (HasEventOccurred(Sequence_Finished)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the ioControl User’s Guide.
• The current state of the event is not relevant to this condition. See Event Occurring?
• Always use Clear Event Latch after the event has occurred. This allows detection of

subsequent events.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

See Also: Event Occurring? Clear Event Latch

Argument 1
Has
Analog Event/Reaction
Digital Event/Reaction

Has Sequence_Finished Analog Event/Reaction
Event Occurred?
ioControl Command Reference E-21

Event Occurring?
Event/Reaction Condition

NOTE: This command is for mistic I/O units only.

Function: To determine if the criteria for a specific event is currently true.

Typical Use: To determine if a specific situation still exists.

Details: Evaluates True if the criteria for the specified event are still true, False if the criteria are no
longer true.

Arguments:

Standard
Example:

OptoScript
Example:

IsEventOccurring(Event/Reaction)
if (IsEventOccurring(Sequence_Finished)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the ioControl User’s Guide.
• This is an easy way to test for an I/O state pattern.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

See Also: Event Occurred?

Argument 1
Is
Analog Event/Reaction
Digital Event/Reaction

Is Sequence_Finished Analog Event/Reaction
Event Occurring?
E-22 ioControl Command Reference

E

Event/Reaction Communication Enabled?
Simulation Condition

NOTE: This command is for mistic I/O units only.

Function: Checks a flag internal to the controller to determine if communication to the specified
event/reaction is enabled.

Typical Use: Primarily used in factory QA testing and simulation.

Details: Evaluates True if communication is enabled.

Arguments:

Standard
Example:

OptoScript
Example:

IsEventReactionCommEnabled(Event/Reaction)
if (IsEventReactionCommEnabled(ER_E_STOP_1)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

See Also: Event/Reaction Group Communication Enabled?

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction

Event/Reaction ER_E_STOP_1
Event/Reaction Communication Enabled?
ioControl Command Reference E-23

Event/Reaction Group Communication Enabled?
Simulation Condition

NOTE: This command is for mistic I/O units only.

Function: Checks a flag internal to the controller to determine if communication to the specified
event/reaction group is enabled.

Typical Use: Primarily used in factory QA testing and simulation.

Details: Evaluates True if communication is enabled.

Arguments:

Standard
Example:

OptoScript
Example:

IsEventReactionGroupEnabled(E/R Group)
if (IsEventReactionGroupEnabled(ER_E-STOP_GROUP)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

See Also: Event/Reaction Communication Enabled?

Argument 1
E/R Group
Event/Reaction Group

E/R Group ER_E_STOP_GROUP
Event/Reaction Group Communication Enabled?
E-24 ioControl Command Reference

E

Event Scanning Disabled?
Event/Reaction Condition

NOTE: This command is for mistic I/O units only.

Function: To determine if a specific event/reaction is active or not.

Typical Use: To verify the active/inactive state of a specific event/reaction.

Details: Evaluates True if the specified event/reaction is not being scanned, False if it is being scanned.

Arguments:

Standard
Example:

OptoScript
Example:

IsEventScanningDisabled(Event/Reaction)
if (IsEventScanningDisabled(Sequence_Finished)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

Notes: See “Event/Reaction Commands” in Chapter 10 of the ioControl User’s Guide.

See Also: Event Scanning Enabled?

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction

Event/Reaction Sequence_Finished
Event Scanning Disabled?
ioControl Command Reference E-25

Event Scanning Enabled?
Event/Reaction Condition

NOTE: This command is for mistic I/O units only.

Function: To determine if a specific event/reaction is active.

Typical Use: To verify the active/inactive state of a specific event/reaction.

Details: Evaluates True if the specified event/reaction is being scanned, False if it’s not being scanned.

Arguments:

Standard
Example:

OptoScript
Example:

IsEventScanningEnabled(Event/Reaction)
if (IsEventScanningEnabled(Sequence_Finished)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “Event/Reaction Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

See Also: Event Scanning Disabled?

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction

Event/Reaction Sequence_Finished
Event Scanning Enabled?
E-26 ioControl Command Reference

F
 F
Find Character in String
String Action

Function: Locate a character within a string.

Typical Use: When parsing strings to locate delimiters and punctuation characters.

Details: • The search is case-sensitive.
• The search begins at the location specified so that multiple occurrences of the same

character can be found.
• The last parameter will contain an integer specifying the position at which the character is

located. Values returned will be from 0 (first position in the string) to the string length.

Arguments:

Standard
Example:

OptoScript
Example:

FindCharacterInString(Find, Start at Index, Of String)
POSITION = FindCharacterInString(34, POSITION, MSG_RECEIVED);

This is a function command; it returns the position at which the character is located in the string.

Notes: • When looking for multiple instances of the same character in the string, use the same
variable for the 2nd and 4th parameters, and increment the variable after each find so that
the same character won’t be found again and again.

• The first position in the string is referred to as position 0.

Error Code: -42 = Invalid limit error. Start at Index value is outside of string width range.
-58 = Specified character could not be found.

See Also: Find Substring in String (page F-2)

Argument 1
Find
Integer 32 Literal
Integer 32 Variable

Argument 2
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of String
String Literal
String Variable

Argument 4
Put Result in
Integer 32 Variable

Find Character in String
Find 97 Integer 32 Literal

Start at Index 0 Integer 32 Literal
Of String MSG_RECEIVED String Variable

Put Result in POSITION Integer 32 Variable
ioControl Command Reference F-1

Find Substring in String
String Action

Function: Locate a string of characters (substring) within a string.

Typical Use: When parsing strings to locate key words.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• The search is case-sensitive.
• The search begins at the location specified so that multiple occurrences of the same

substring can be found.
• The Put Result In parameter will contain either an integer specifying the position at which

the substring starts, or an error code. Values returned will be from 0 (first position in the
string) to the string length, or a negative error code.

• Strings that are longer than the specified width for the string variable are truncated and lose
characters on the right-hand side.

Arguments:

Standard
Example:

This example shows the string in quotes for clarity only; do not use quotes in the standard
command:

OptoScript
Example:

FindSubstringInString(Find, Start at Index, Of String)
POSITION = FindSubstringInString("SHIFT", INDEX, MSG_RECEIVED);

This is a function command; it returns the position at which the substring starts within the string.
Quotes are required in OptoScript code.

Notes: Check for a possible error returned in the Put Result In parameter.

Error Code: -42 = Invalid limit error. Start at Index value was negative or greater than the string length.
-45 = String is empty. Either the string variable searched or the substring is empty.
-57 = Specified substring was not found.

See Also: Find Character in String (page F-1)

Argument 1
Find
String Literal
String Variable

Argument 2
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of String
String Literal
String Variable

Argument 4
Put Result in
Integer 32 Variable

Find Substring in String
Find “SHIFT” String Literal

Start at Index INDEX Integer 32 Variable
Of String MSG_RECEIVED String Variable

Put Result in POSITION Integer 32 Variable
F-2 ioControl Command Reference

F

Float Valid?
Miscellaneous Condition

Function: To verify that a float variable contains a valid value.

Typical Use: To check float validity after reading a float from an external device, such as a communication
handle, a scratch pad location, or an analog point.

Details: This command performs a simple test on the float variable to see if it contains a valid IEEE format
float number. If the bit pattern of the float value has at least these bits set, 0x7F800000
(01111111100000000000000000000000), then it is considered invalid and the command returns
a false (0).

Arguments:

Standard
Example:

OptoScript
Example:

IsFloatValid(Float)
if (IsFloatValid(Oil_Pressure)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: Analog points on an unplugged module return a value of NAN (not a number--an invalid float).

See Also: Move 32 Bits (page M-7), Get I/O Unit Scratch Pad Float Element (page G-70), Read Number from
I/O Unit Memory Map (page R-5)

Argument 1
Is
Float Variable

Float Valid?
Is Oil_Pressure Float Variable
ioControl Command Reference F-3

F-4 ioControl Command Reference

G
 G
Generate Checksum on String
String Action

Function: Calculate an eight-bit checksum value.

Typical Use: Communication that requires checksum error checking.

Details: • Checksum type is eight-bit.
• The Start Value is also known as the “seed.” It is usually zero.
• When calculating the checksum one character at a time (or a group of characters at a time),

the Start Value must be the result of the calculation on the previous character(s).
• The On String can contain as little as one character.

Arguments:

Standard
Example:

OptoScript
Example:

GenerateChecksumOnString(Start Value, On String)
POSITION = GenerateChecksumOnString(0, MSG_TO_SEND);

This is a function command; it returns the checksum. The returned value can be consumed by a
variable (as shown) or by another item, such as a mathematical expression or a control structure.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: The method used to calculate the checksum is:

1 Take the numerical sum of the ASCII numerical representation of each character in the
string.

2 Divide the result by 256.

3 The integer remainder is the eight-bit checksum.
Alternate checksum methods:
• An 8-bit (one byte) checksum for a string can be appended to a string using the Append

Character to String command.
• The checksum for an ASCII string can be appended to the string by using the following

standard commands:

1 Convert Number to Formatted Hex String with the length argument set to a value of 2.

2 Append String to String.

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Result in
Integer 32 Variable

Generate Checksum on String
Start Value 0 Integer 32 Literal
On String MSG_TO_SEND String Variable

Put Result in POSITION Integer 32 Variable
ioControl Command Reference G-1

• To calculate the LRC of a string, take the two’s complement of the checksum:

1 Generate checksum on the string.

2 Subtract the checksum from 255. This is the one’s complement of the checksum.

3 Add one to the result. This is the two’s complement of the checksum.

Example: For a string containing only the capital letter “A”, the checksum is 65. To calculate
the LRC, subtract the checksum (65) from 255, which equals 190. Add one to this result,
resulting in an LRC of 191.

See Also: Verify Checksum on String (page V-3)
G-2 ioControl Command Reference

G

Generate Forward CCITT on String
String Action

Function: Calculate a 16-bit CRC value.

Typical Use: Communication that requires CRC error checking.

Details: • CRC type is 16-bit forward CCITT.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• When calculating the CRC one character at a time (or a group of characters at a time), the

Start Value must be the result of the calculation on the previous character(s).
• The On String can contain as little as one character.

Arguments:

Standard
Example:

OptoScript
Example:

GenerateForwardCcittOnString(Start Value, On String)
POSITION = GenerateForwardCcittOnString(0, MSG_TO_SEND);

This is a function command; it returns the forward CCITT. The returned value can be consumed
by a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: The forward CCITT can be appended to the string by using the following commands:

1 Convert Number to Formatted Hex String with the length argument set to a value of 4.

2 Get Substring on first two characters of formatted hex string (index 0, length 2).
Get Substring on next two characters of formatted hex string (index 2, length 2).

3 Convert Hex String to Number on both substrings.

4 Append Character to String on first substring, then second substring to source string.

Result Data: The “Put Result in” argument will contain the Forward CCITT that was calculated.

See Also: Generate Reverse CCITT on String (page G-7), Generate Forward CRC-16 on String (page G-4),
Generate Reverse CRC-16 on Table (32 bit) (page G-9)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Result in
Integer 32 Variable

Generate Forward CCITT on String
Start Value 0 Integer 32 Literal
On String MSG_TO_SEND String Variable

Put Result in POSITION Integer 32 Variable
ioControl Command Reference G-3

Generate Forward CRC-16 on String
String Action

Function: Calculate a 16-bit CRC value.

Typical Use: Communication that requires CRC error checking.

Details: • CRC type is 16-bit forward.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• When calculating the CRC one character at a time (or a group of characters at a time), the

Start Value must be the result of the calculation on the previous character(s).
• The On String can contain as little as one character.

Arguments:

Standard
Example:

OptoScript
Example:

GenerateForwardCrc16OnString(Start Value, On String)
POSITION = GenerateForwardCrc16OnString(0, MSG_TO_SEND);

This is a function command; it returns the forward CRC. The returned value can be consumed by
a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • The CRC can be appended to the string one character at a time using Append Character to
String. For the first character use Bit Shift -8 on the CRC and append the result. For the
second character simply append the original CRC value.

• The CRC can also be appended to the string by using the following commands:

1 Convert Number to Formatted Hex String with the length argument set to a value of 4.

2 Get Substring on first two characters of formatted hex string (index 0, length 2).
Get Substring on next two characters of formatted hex string (index 2, length 2).

3 Convert Hex String to Number on both substrings.

4 Append Character to String on first substring, then second substring to source string.

See Also: Generate Reverse CRC-16 on String (page G-8), Generate Forward CCITT on String (page G-3),
Generate Reverse CRC-16 on Table (32 bit) (page G-9)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Result in
Integer 32 Variable

Generate Forward CRC-16 on String
Start Value 0 Integer 32 Literal
On String MSG_TO_SEND String Variable

Put Result in POSITION Integer 32 Variable
G-4 ioControl Command Reference

G

Generate N Pulses
Digital Point Action

Function: To output a specified number of pulses of configurable on and off times.

Typical Use: To drive stepper motor controllers, flash indicator lamps, or increment counters.

Details: • Generates a digital waveform on the specified digital output channel. On Time specifies the
amount of time in seconds that the channel will remain on during each pulse; Off Time
specifies the amount of time the channel will remain off.

• The minimum On Time and Off Time is 0.001 second with a resolution of 0.0001 second,
making the maximum frequency 500 Hertz.

• The maximum On Time and Off Time is 429,496.7000 seconds (4.97 days on, 4.97 days off).
• Valid range for Number of Pulses is 0 to 2,147,483,647 if an integer is used, 0 to

4,294,967,000 if a float is used.

Arguments:

Standard
Example:

OptoScript
Example:

GenerateNPulses(On Time (Seconds), Off Time (Seconds), Number of Pulses, On Point)
GenerateNPulses(0.250, 0.500, Number_of_Pulses, DIG_OUTPUT);

This is a procedure command; it does not return a value.

Notes: • Pulse trains on mistic brains are cancelled when a Turn Off or Turn On is sent to the output.
To cancel a pulse train on an Ethernet brain, use this command with both the on times and
off times set to 0.

• Executing a Generate N Pulses command will discontinue any previous Generate N Pulses
command.

• The minimum on or off time is 0.001 seconds; however, the digital output module’s minimum
turn-on and turn-off times may be greater. Check the specifications for the module to be
used.

Dependencies: • Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO
and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

See Also: Start Continuous Square Wave (page S-94)

Argument 1
On Time (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Off Time (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
Number of Pulses
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 4
On Point
Digital Output

Generate N Pulses
On Time (Seconds) 0.250 Float Literal
Off Time (Seconds) 0.500 Float Literal
Number of Pulses Number_of_Pulses Float Variable

On Point DIG_OUTPUT Digital Output
ioControl Command Reference G-5

Generate Random Number
Mathematical Action

Function: To get a random value between zero and one.

Typical Use: To generate random delay values for retries when multiple clients are requesting the
same resource.

Details: Use Seed Random Number before using this command to give the random number generator a
random value to start with. Since the sequence of “random” numbers generated for any given
seed value is always the same, it is imperative that a random seed value be used to avoid
generating the same sequence of numbers every time.

Arguments:

Standard
Example:

OptoScript
Example:

GenerateRandomNumber()
LOTTO_SEED = GenerateRandomNumber();

This is a function command; it returns the random number. The returned value can be consumed
by a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: To get a random integer between zero and 99, for example, multiply the float value returned by
99.0 and put the result in an integer.

Dependencies: Use Seed Random Number first.

See Also: Seed Random Number (page S-4)

Argument 1
Put in
Float Variable

Generate Random Number
Put in LOTTO_SEED Float Variable
G-6 ioControl Command Reference

G

Generate Reverse CCITT on String
String Action

Function: Calculate a 16-bit CRC value.

Typical Use: Communication that requires CRC error checking.

Details: • CRC type is 16-bit reverse CCITT.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• When calculating the CRC one character at a time (or a group of characters at a time), the

Start Value must be the result of the calculation on the previous character(s).
• The On String can contain as little as one character.

Arguments:

Standard
Example:

OptoScript
Example:

GenerateReverseCcittOnString(Start Value, On String)
POSITION = GenerateReversCcittOnString(0, MSG_TO_SEND);

This is a function command; it returns the reverse CCITT. The returned value can be consumed by
a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • The reverse CCITT can be appended to the string one character at a time using Append
Character to String. For the first character use Bit Shift -8 on the CRC and append the result.
For the second character simply append the original CRC value.

• The CCITT can also be appended to the string by using the following commands:

1 Convert Number to Formatted Hex String using an integer and the length argument set to
a value of 4.

2 Get Substring on first two characters of formatted hex string (index 0, length 2).
Get Substring on next two characters of formatted hex string (index 2, length 2).

3 Convert Hex String to Number on both substrings.

4 Append Character to String on first substring, then second substring to source string.

See Also: Generate Forward CCITT on String (page G-3), Generate Reverse CRC-16 on String (page G-8),
Generate Reverse CRC-16 on Table (32 bit) (page G-9)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Result in
Integer 32 Variable

Generate Reverse CCITT on String
Start Value 0 Integer 32 Literal
On String MSG_TO_SEND String Variable

Put Result in POSITION Integer 32 Variable
ioControl Command Reference G-7

Generate Reverse CRC-16 on String
String Action

Function: Calculate a 16-bit CRC value.

Typical Use: Communication that requires CRC error checking.

Details: • CRC type is 16-bit reverse.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• When calculating the CRC one character at a time (or a group of characters at a time), the

Start Value must be the result of the calculation on the previous character(s).
• The On String can contain as little as one character.

Arguments:

Standard
Example:

OptoScript
Example:

GenerateReverseCrc16OnString(Start Value, On String)
POSITION = GenerateReverseCrc16OnString(0, MSG_TO_SEND);

This is a function command; it returns the CRC. The returned value can be consumed by a variable
(as shown) or by another item, such as a mathematical expression or a control structure. See
Chapter 11 of the ioControl User’s Guide for more information.

Notes: • The CRC can be appended to the string one character at a time using Append Character to
String. For the first character use Bit Shift -8 on the CRC and append the result. For the
second character simply append the original CRC value.

• The CRC can also be appended to the string by using the following commands:

1 Convert Number to Formatted Hex String using an integer and the length argument set to
a value of 4.

2 Get Substring on first two characters of formatted hex string (index 0, length 2).
Get Substring on next two characters of formatted hex string (index 2, length 2).

3 Convert Hex String to Number on both substrings.

4 Append Character to String on first substring, then second substring to source string.

See Also: Generate Forward CRC-16 on String (page G-4), Generate Reverse CCITT on String (page G-7),
Generate Reverse CRC-16 on Table (32 bit) (page G-9)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Result in
Integer 32 Variable

Generate Reverse CRC-16 on String
Start Value 0 Integer 32 Literal
On String MSG_TO _SEND String Variable

Put Result in POSITION Integer 32 Variable
G-8 ioControl Command Reference

G

Generate Reverse CRC-16 on Table (32 bit)
Miscellaneous Action

Function: Calculate a 16-bit CRC value.

Typical Use: Communication that requires CRC error checking. The command is a quick and convenient way
to verify the integrity of table data transferrred serially.

Details: • CRC type is 16-bit reverse.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• The table can contain as little as one element.

Arguments:

Standard
Example:

OptoScript
Example:

GenerateReverseCrc16OnTable32(Start Value, Table, Starting Element, Number of
Elements)
POSITION = GenerateReverseCrc16OnTable32(0, VALUES_TO_SEND, 1, 31);

This is a function command; it returns the CRC. The returned value can be consumed by a variable
(as shown) or by another item, such as a mathematical expression or a control structure. See
Chapter 11 of the ioControl User’s Guide for more information.

Notes: • This command is only useful once the data in the table is static.
• The easiest way to check data is to make the table one element longer than necessary, then

generate the CRC and move its result to the extra table element. The command Transmit
Numeric Table is typically used to transfer table elements, including the CRC value. When
the data is received, use this command at the receiving end to generate the CRC again and
compare it to the first CRC value. For example, on the control engine sending the data:

1 Generate Reverse CRC-16 on Table (32 bit) on table elements 1–31.

2 Use Move to Table Element to move the CRC value to table element 0.

3 Use Transmit Numeric Table to send all 32 table elements (0–31).

Then, on the control engine receiving the data:

1 Receive Numeric Table.

2 Generate Reverse CRC-16 on Table (32 bit) on table elements 1–31.

3 Compare the calculated CRC against the value stored in element 0.

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
Table
Float Table
Integer 32 Table

Argument 3
Starting Element
Integer 32 Literal
Integer 32 Variable

Argument 4
Number of Elements
Integer 32 Literal
Integer 32 Variable

Argument 5
Put Result in
Integer 32 Variable

Generate Reverse CRC-16 on Table (32 bit)
Start Value 0 Integer 32 Literal

Table VALUES_TO _SEND FloatTable
Starting Element 1 Integer 32 Literal

Number of Elements 31 Integer 32 Literal
Put Result in POSITION Integer 32 Variable
ioControl Command Reference G-9

See Also: Generate Forward CRC-16 on String (page G-4), Generate Reverse CCITT on String (page G-7),
Generate Forward CCITT on String (page G-3)

Get & Clear All HDD Module Off-Latches
High Density Digital Module Action

Function: To read and reset the off-latches for all points on all high-density digital input modules on one
I/O unit.

Typical Use: To read and reset off-latches for all high-density digital points on the I/O unit with a single
command.

Details: • Works only on high-density digital modules, not on standard digital modules.
• Places all off-latch data as bitmasks in an integer 32 table at a designated starting index.

Argument 2 sets the index number and Argument 3 indicates the table.
• The table that receives the data must contain at least 16 elements after the starting index.

(If the table is not large enough, an error -3 is returned.) Data for point zero is placed in the
first specified table element, with other points following in order. If a slot does not contain a
high-density digital module, its corresponding table element is zero-filled.

Arguments:

Standard
Example:

For example, if the I/O unit UIO_A consists of an 8-module rack with an analog module in slot 0
and HDD modules in slots 1–7, table Bldg_A_OffL might be filled as follows:

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result In
Integer 32 Table

Argument 4
Put Status In
Integer 32 Variable

Get & Clear All HDD Module Off-Latches
I/O Unit UIO_A SNAP-UP1-ADS

Start Index 0 Integer 32 Literal
Put Result In Bldg_A_OffL Integer 32 Table
Put Status in Status_Code Integer 32 Variable

 Index Value (Bitmask)

0 00000000000000000000000000000000 (This module is not a HDD module.)
G-10 ioControl Command Reference

G

OptoScript
Example:

GetClearAllHddModuleOffLatches(I/O Unit, Start Index, Put Result In)
Status_Code = GetClearAllHddModuleOffLatches(UIO_A, 0, Bldg_A_OffL);

This is a function command; it returns one of the status codes shown below.

Notes: • To read and reset the off-latches on only one HDD module, use Get & Clear HDD Module
Off-Latches. To read off-latches without clearing them, use Get All HDD Module Off-Latches.

• You can manipulate bits within the table using commands such as Numeric Table Element
Bit Test, or move the data in one element to a variable and use commands such as Bit Test.

• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,
and see form #1547, the SNAP High-Density Digital Module User’s Guide.

Status Codes: 0 = Success
-3 = Invalid table length.
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get & Clear HDD Module Off-Latches (page G-22), Get All HDD Module Off-Latches (page G-32),
Numeric Table Element Bit Test (page N-8), Bit Test (page B-17), and other Bit commands.

1 01100001010001110000001010110010 Each index contains the off-latch data for the
HDD module in the corresponding position on
the rack. A value of 1 indicates that the
off-latch is on (set); a value of 0 indicates that
it is off (not set). The least significant bit
corresponds to point zero on the module.
In this example, index 2, which contains the
off-latch data for all points on the module in
slot 2, shows that off-latches for points 0, 1, 2,
10, 14, and 19 are on. All others are off.

2 00000000000010000100010000000111

3 00100000011000000010010001000100

4 01100001010001110000001010110010

5 00001110000100001100100000001001

6 10000000110000011100000000100100

7 00110000011100001111100000000001

8 00000000000000000000000000000000 The remainder of the table is zero-filled, since
there are no more modules.

15 00000000000000000000000000000000

 Index Value (Bitmask)
ioControl Command Reference G-11

Get & Clear All HDD Module On-Latches
High Density Digital Module Action

Function: To read and reset on-latches for all points on all high-density digital input modules on an I/O unit.

Typical Use: To read and reset on-latches for all high-density digital points on the I/O unit with a single
command.

Details: • Works only on high-density digital modules, not on standard digital modules.
• Places all on-latch data as bitmasks in an integer 32 table at a designated starting index.

Argument 2 sets the index number and Argument 3 indicates the table.
• The table that receives the data must contain at least 16 elements after the starting index.

(If the table is not large enough, an error -3 is returned.) Data for point zero is placed in the
first specified table element, with other points following in order. If a slot does not contain a
high-density digital module, its corresponding table element is zero-filled.

Arguments:

Standard
Example:

For example, if the I/O unit UIO_A consists of an 8-module rack with an analog module in slot 0
and HDD modules in slots 1–7, table Bldg_A_OnLatches might be filled as follows:

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result In
Integer 32 Table

Argument 4
Put Status In
Integer 32 Variable

Get & Clear All HDD Module On-Latches
I/O Unit UIO_A SNAP-UP1-ADS

Start Index 0 Integer 32 Literal
Put Result In Bldg_A_OnLatches Integer 32 Table
Put Status in Status_Code Integer 32 Variable

 Index Value (Bitmask)

0 00000000000000000000000000000000 (This module is not a HDD module.)

1 01100001010001110000001010110010 Each index contains the on-latch data for the
HDD module in the corresponding position on
the rack. A value of 1 indicates that the
on-latch is on (set); a value of 0 indicates that
it is off (not set). The least significant bit
corresponds to point zero on the module.
In this example, index 2, which contains the
on-latch data for all points on the module in
slot 2, shows that on-latches for points 0, 1, 2,
10, 14, and 19 are on. All others are off.

2 00000000000010000100010000000111

3 00100000011000000010010001000100

4 01100001010001110000001010110010

5 00001110000100001100100000001001

6 10000000110000011100000000100100

7 00110000011100001111100000000001
G-12 ioControl Command Reference

G

OptoScript
Example:

GetClearAllHddModuleOnLatches(I/O Unit, Start Index, Put Result In)
Status_Code = GetClearAllHddModuleOnLatches(UIO_A, 0, Bldg_A_OnLatches);

This is a function command; it returns one of the status codes shown below.

Notes: • To read and reset the on-latches on only one HDD module, use Get & Clear HDD Module
On-Latches. To read on-latches without clearing them, use Get All HDD Module On-Latches.

• You can manipulate bits within the table using commands such as Numeric Table Element
Bit Test, or move the data in one element to a variable and use commands such as Bit Test.

• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,
and see form #1547, the SNAP High-Density Digital Module User’s Guide.

Status Codes: 0 = Success
-3 = Invalid table length.
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get & Clear HDD Module On-Latches (page G-24), Get All HDD Module On-Latches (page G-34),
Numeric Table Element Bit Test (page N-8), Bit Test (page B-17), and other Bit commands.

8 00000000000000000000000000000000 The remainder of the table is zero-filled, since
there are no more modules.

15 00000000000000000000000000000000

 Index Value (Bitmask)
ioControl Command Reference G-13

Get & Clear Analog Filtered Value
Analog Point Action

Function: To read a digitally filtered input value from a specified analog channel, then set the filtered value
to the current value.

Typical Use: To restart digital filtering using the current value as the default.

Details: • Filtering is used to smooth analog input signals that are erratic or change suddenly. The
formula used for filtering is Y = (X - Y)/W + Y, where Y is the filtered value, X is the new
unfiltered value, and W is the filter weight.

• Digital filtering must be activated before using this command by using Set Analog
Filter Weight.

• Digital filtering, if activated, is performed at the I/O unit. The analog input point is sampled
10 times a second with the filtered value stored locally on the I/O unit.

• The unfiltered analog input is still available using standard analog commands.

Arguments:

Standard
Example:

OptoScript
Example:

GetClearAnalogFilteredValue(From)
Filtered_Temp = GetClearAnalogFilteredValue(Temp_Sensor);

This is a function command; it returns the analog filtered value.The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • Do not use this command for frequent reads (one per second or faster) since it continually
resets the averaging. Use Get Analog Filtered Value instead.

• To ensure that digital filtering will always be active, store changeable I/O unit values (such
as filter weight) in permanent memory at the I/O unit. (You can do so through Debug mode.)

Dependencies: • Before using this command, Set Analog Filter Weight must be executed. Otherwise, a value
of -32,768 will be returned to indicate an error.

• Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO
and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

Result Data: Channels without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

See Also: Get Analog Filtered Value (page G-38), Set Analog Filter Weight (page S-7)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable

Get & Clear Analog Filtered Value
From Temp_Sensor Analog Input
Put in Filtered_Temp Float Variable
G-14 ioControl Command Reference

G

Get & Clear Analog Maximum Value
Analog Point Action

Function: To retrieve the peak value of a specified analog input since its last reading, then reset it to the
current value.

Typical Use: To capture the peak value over a given period of time.

Details: • The current value for each point is regularly read and stored at the I/O unit. Check the
specifications for the module and I/O unit to be used if high-speed readings are required.

• Min and max values are recorded at the I/O unit immediately after the current value
is updated.

Arguments:

Standard
Example:

OptoScript
Example:

GetClearAnalogMaxValue(From)
MAX_KPA = GetClearAnalogMaxValue(Pres_Sensor);

This is a function command; it returns the maximum value of the input since its last reading. The
returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide for
more information.

Notes: Use this command to clear the analog max value before actual readings commence.

Result Data: • The value returned will be the highest value recorded on this point since the last time the
maximum value was cleared, or since the unit was turned on.

• Points without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

See Also: Get & Clear Analog Minimum Value (page G-16), Get Analog Minimum Value (page G-40)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable

Get & Clear Analog Maximum Value
From Pres_Sensor Analog Input
Put in MAX_KPA Float Variable
ioControl Command Reference G-15

Get & Clear Analog Minimum Value
Analog Point Action

Function: To retrieve the lowest value of a specified analog input since its last reading, then reset it to the
current value.

Typical Use: To capture the lowest value over a given period of time.

Details: • The current value for each point is regularly read and stored at the I/O unit. Check the
specifications for the module and I/O unit to be used if high-speed readings are required.

• Min and max values are recorded at the I/O unit immediately after the current value
is updated.

Arguments:

Standard
Example:

OptoScript
Example:

GetClearAnalogMinValue(From)
MIN_KPA = GetClearAnalogMinValue(Pres_Sensor);

This is a function command; it returns the minimum value of the input since its last reading. The
returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide for
more information.

Notes: Use this command to clear the analog min value before actual readings commence.

Result Data: • The value returned will be the lowest value recorded since the last time the minimum value
was reset or since the unit was turned on.

• Points without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

See Also: Get & Clear Analog Maximum Value (page G-15), Get Analog Maximum Value (page G-39)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable

Get & Clear Analog Minimum Value
From PRES_SENSOR Analog Input
Put in MIN_KPA Float Variable
G-16 ioControl Command Reference

G

Get & Clear Analog Totalizer Value
Analog Point Action

NOTE: This command is for mistic I/O units only.

Function: To read and clear the totalized (integrated) value of a specified analog input.

Typical Use: To capture a flow total that has been accumulating at the I/O unit before it reaches its
maximum value.

Details: • Totalizing is performed at the I/O unit by sampling the input point and storing the total value
locally on the I/O unit. This command reads the current total, then clears it to zero.

• The sample rate is set using the Set Analog Totalizer Rate Command.
• Totalizing will be bidirectional if the input range is bidirectional, such as -10 to +10.
• Totalizing will stop when the total reaches a maximum of 3276 seconds.
• Totalizing will resume after using Get & Clear Analog Totalizer Value.
• Totalizing will stop when then input channel becomes under range or disabled. Totalizing

will resume when the input signal is back within range.

Arguments:

Standard
Example:

OptoScript
Example:

GetClearAnalogTotalizerValue(From)
Total_Barrels = GetClearAnalogTotalizerValue(Flow_Rate);

This is a function command; it returns the totalizer value for the analog input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • Before using this command, use Set Analog Totalizer Rate once to establish the sampling
rate and start the totalizer. Use this command to clear the total before actual readings start.

• Use Get Analog Totalizer Value periodically to simply “watch” the total. When it exceeds
30,000, use Get & Clear Analog Totalizer Value to capture the total to a float variable and
reset it to zero.

• Do not use this command frequently when the total is a small value. Doing so may degrade
the cumulative accuracy.

Dependencies: • Before using this command, Set Analog Totalizer Rate must be executed. Otherwise, a value
of -32,768 will be returned to indicate an error.

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable

Get & Clear Analog Totalizer Value
From Flow_Rate Analog Input
Put in Total_Barrels Float Variable
ioControl Command Reference G-17

• Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO
and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

Result Data: • The value returned will be an integer from -32,768 to 32,767.
• Channels without a module installed will return a value of -32,768 to indicate an error.

See Also: Get Analog Totalizer Value (page G-43), Set Analog Totalizer Rate (page S-12)

Get & Clear Counter
Digital Point Action

Function: To read and clear a standard digital input counter or quadrature counter value.

Typical Use: To count pulses from turbine flow meters, magnetic pickups, encoders, proximity switches, etc.
To read incremental encoders for positional or velocity measurement.

Details: • Standard digital only. For high-density digital, see Get & Clear HDD Module Counter.
• Reads the current value of a digital input counter or quadrature counter and places it in the

Put In parameter.
• Sets the counter or quadrature counter at the I/O unit to zero. Does not stop the counter or

quadrature counter from continuing to count.
• Valid range for a counter is 0 to 2,147,483,647 counts. Valid range for a quadrature counter

is -2,147,483,647 to 2,147,483,648 counts.
• On serial (mistic) units, for a quadrature counter, a positive value indicates forward

movement (phase B leads phase A), and a negative value indicates reverse movement
(phase A leads phase B). On Ethernet-based (MMP) I/O units, the opposite is true (a positive
value is returned when phase A leads phase B).

• A quadrature counter occupies two adjacent points. Input module pairs specifically made for
quadrature counting must be used. The first point must be an even point number on the I/O
unit. For example, positions 0 and 1, 4 and 5 are valid, but 1 and 2, 3 and 4 are not.

Arguments:

Standard
Example:

OptoScript
Example:

GetClearCounter(From Point)
Number_of_Bottles = GetClearCounter(Bottle_Counter);

This is a function command; it returns the counter or quadrature counter value from the digital
input. The returned value can be consumed by a variable (as shown) or by another item, such as

Argument 1
From Point
Counter
Quadrature Counter

Argument 2
Put in
Float Variable
Integer 32 Variable

Get & Clear Counter
From Point Bottle_Counter Counter

Put in Number_of_Bottles Integer 32 Variable
G-18 ioControl Command Reference

G

a mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide
for more information.

Notes: • The maximum speed at which a counter can operate is limited by the input module’s turn-on
and turn-off times. Check the specifications for the module to be used.

• For a quadrature counter, the maximum encoder RPM will be related to the number of pulses
per revolution that the encoder provides. Max Encoder RPM = (750,000 Pulses per Minute) /
(Encoder Pulses [or lines] per Revolution).

Dependencies: • Always use Start Counter once before using this command for the first time.
• Applies only to standard digital inputs configured as a counter or quadrature counter.

See Also: Get & Clear Counter (page G-18), Start Continuous Square Wave (page S-94), Stop Counter
(page S-101), Clear Counter (page C-22)

Get & Clear Event Latches
Event/Reaction Action

Function: Gets and clears all event latches in the specified group.
Typical Use: To get and clear all event latches in the specified group with one command rather than issuing a

separate command for each one.
Details: • There can be up to 16 event/reaction groups, each containing as many as 16 event latches. If

all related event latches are in the same group, this command could be quite useful.
• The value returned is an integer with the lower 16 bits representing the 16 latches in the

group. If the variable has a value greater than zero, one or more latches are set.
• Available on mistic multifunction I/O units. For a list of mistic multifunction brains, see the

Appendix Opto 22 Brain Families.

Arguments:

Standard
Example:

OptoScript
Example:

GetClearEventLatches(E/R Group)
Group_Latch_Status = GetClearEventLatches(ER_E_STOP_GROUP_A);

This is a function command; it returns the status of all 16 event latches in the event/reaction
group, in the form of an integer with the lower 16 bits representing the latches. The returned
value can be consumed by a variable (as shown) or by another item, such as a mathematical
expression. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: Bit Test could be used to test each of the lower 16 bits numbered 0–15.

See Also: Get Event Latches (page G-54)

Argument 1
Event/Reaction Group
Event/Reaction Group

Argument 2
Put in
Integer 32 Variable

Get & Clear Event Latches
Event/Reaction Group ER_E_STOP_GROUP_A

Put in Group_Latch_Status Integer 32 Variable
ioControl Command Reference G-19

Get & Clear HDD Module Counter
High Density Digital Module Action

Function: To read and reset the counter for a specific point on a high-density digital input module.

Typical Use: To read and reset the counter for one point only.

Details: • Works only on high-density digital input modules, not on standard digital modules.
• Places the counts in an integer 32 variable and then clears the counter.

Arguments:

Standard
Example:

OptoScript
Example:

GetClearHddModuleCounter(I/O Unit, Module Number, Point Number, Put Result In)
Status_Code = GetClearHddModuleCounter(Ins_42, 8, Meter, Meter_8_Counts);

This is a function command; it returns one of the status codes shown below.

Notes: • To read and clear all counters on a module, use Get & Clear HDD Module Counters. To read
counters without clearing them, use Get HDD Module Counters.

• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,
and see form #1547, the SNAP High-Density Digital Module User’s Guide.

• Counters with values of more than 2 billion may appear as negative numbers.

Status Codes: 0 = Success
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get & Clear HDD Module Counters (page G-21), Get HDD Module Counters (page G-57)

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Module Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Point Number
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Result In
Integer 32 Variable

Argument 5
Put Status In
Integer 32 Variable

Get & Clear HDD Module Counter
I/O Unit Ins_42 SNAP-ENET-S64

Module Number 8 Integer 32 Literal
Point Number Meter Integer 32 Variable
Put Result In Meter_8_Counts Integer 32 Variable
Put Status in Status_Code Integer 32 Variable
G-20 ioControl Command Reference

G

Get & Clear HDD Module Counters
High Density Digital Module Action

Function: To read and reset the counters for all points on a high-density digital input module.

Typical Use: To read and reset all counters on a module in one command.

Details: • Works only on high-density digital modules, not on standard digital modules.
• Places counter data for all points in the module in an integer 32 table at a designated

starting index, and then clears all counters. Argument 3 sets the index number and
Argument 4 indicates the table.

• The table that receives the data must contain at least 32 elements after the starting index.
(If the table is not large enough, an error -3 is returned.) Data for point zero is placed in the
first specified table element, with other points following in order.

Arguments:

Standard
Example:

For example, if the value of the variable Index is zero, the first four elements of the Meter_Counts
table might be filled as follows:

OptoScript
Example:

GetClearHddModuleCounters(I/O Unit, Module Number, Start Index, Put Result In)
Status_Code = GetClearHddModuleCounters(In_42, Section, Index, Meter_Ct);

This is a function command; it returns one of the status codes shown below.

Notes: • To read and clear just one counter on a module, use Get & Clear HDD Module Counter. To
read counters without clearing them, use Get HDD Module Counters.

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Module Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Result In
Integer 32 Table

Argument 5
Put Status In
Integer 32 Variable

Get & Clear HDD Module Counters
I/O Unit In_42 SNAP-ENET-S64

Module Number Section Integer 32 Variable
Start Table Index Index Integer 32 Variable

Put Result In Meter_Ct Integer 32 Table
Put Status in Status_Code Integer 32 Variable

 Index Counter Value

0 61 Counter data for point 0

1 85 Counter data for point 1

2 102 Counter data for point 2

3 42 Counter data for point 3
ioControl Command Reference G-21

• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,
and see form #1547, the SNAP High-Density Digital Module User’s Guide.

• Counters with values of more than 2 billion may appear as negative numbers.

Status Codes: 0 = Success
-3 = Invalid table length. Table must contain at least 32 elements.
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get & Clear HDD Module Counter (page G-20), Get HDD Module Counters (page G-57)

Get & Clear HDD Module Off-Latches
High Density Digital Module Action

Function: To read and reset the off-latches of all points on a high-density digital input module.

Typical Use: To read and clear off-latches on a module in one command.

Details: • Works only on high-density digital modules, not on standard digital modules.
• Places a bitmask in an integer 32 variable showing the state of off-latches for all points on

the module, and resets the latches. The least significant bit in the mask corresponds to point
0. A value of 1 in a bit means the off-latch is on (set); a value of 0 in the bit means the
off-latch is off (not set).

Arguments:

Standard
Example:

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Module Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result In
Integer 32 Variable

Argument 4
Put Status In
Integer 32 Variable

Get & Clear HDD Module Off-Latches
I/O Unit Bldg_A SNAP-B3000-ENET,

SNAP-ENET-RTC
Module Number 9 Integer 32 Literal

Put Result In Fan_OffLatches Integer 32 Variable
Put Status in Status_Code Integer 32 Variable
G-22 ioControl Command Reference

G

An example of the result is illustrated below. Only the first 8 and last 8 off-latches are shown.

OptoScript
Example:

GetClearHddModuleOffLatches(I/O Unit, Module Number, Put Result In)
Status_Code = GetClearHddModuleOffLatches(Bldg_A, 9, Fan_OffLatches);

This is a function command; it returns one of the status codes shown below.

Notes: • To read off-latches without clearing them, use Get HDD Module Off-Latches.
• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,

and see form #1547, the SNAP High-Density Digital Module User’s Guide.

Status Codes: 0 = Success
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get HDD Module Off-Latches (page G-58), Get & Clear All HDD Module Off-Latches (page G-10),
Get All HDD Module On-Latches (page G-34)

Bitma
sk

Hex 9 3 B 2

Binary 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0

Off-latch o
n

o
f
f

o
f
f

o
n

o
f
f

o
f
f

o
n

o
n

o
n

o
f
f

o
n

o
n

o
f
f

o
f
f

o
n

o
f
f

Point Number 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

7 6 5 4 3 2 1 0
ioControl Command Reference G-23

Get & Clear HDD Module On-Latches
High Density Digital Module Action

Function: To read and reset the on-latches of all points on a high-density digital input module.

Typical Use: To read and reset all on-latches on a module in one command.

Details: • Works only on high-density digital modules, not on standard digital modules.
• Places a bitmask in an integer 32 variable that indicates the state of on-latches for all points

on the module, and resets the latches. The least significant bit corresponds to point 0. A
value of 1 in a bit means the on-latch is on (set); a value of 0 in the bit means the on-latch is
off (not set).

Arguments:

Standard
Example:

An example of the result is illustrated below. Only the first 8 and last 8 on-latches are shown.

OptoScript
Example:

GetClearHddModuleOnLatches(I/O Unit, Module Number, Put Result In)
Status_Code = GetClearHddModuleOnLatches(Bldg_A, 9, Fan_OnLatches);

This is a function command; it returns one of the status codes shown below.

Notes: • To read on-latches without clearing them, use Get HDD Module On-Latches.
• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,

and see form #1547, the SNAP High-Density Digital Module User’s Guide.

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Module Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result In
Integer 32 Variable

Argument 4
Put Status In
Integer 32 Variable

Get & Clear HDD Module On-Latches
I/O Unit Bldg_A SNAP-B3000-ENET,

SNAP-ENET-RTC
Module Number 9 Integer 32 Literal

Put Result In Fan_OnLatches Integer 32 Variable
Put Status in Status_Code Integer 32 Variable

Bitma
sk

Hex 9 3 B 2

Binary 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0

On-latch o
n

o
f
f

o
f
f

o
n

o
f
f

o
f
f

o
n

o
n

o
n

o
f
f

o
n

o
n

o
f
f

o
f
f

o
n

o
f
f

Point Number 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

7 6 5 4 3 2 1 0
G-24 ioControl Command Reference

G

Status Codes: 0 = Success

-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get HDD Module On-Latches (page G-60), Get & Clear All HDD Module On-Latches (page G-12),
Get All HDD Module Off-Latches (page G-32)

Get & Clear Off-Latch
Digital Point Action

Function: To read and re-arm a high-speed off-latch associated with a standard digital input.

Typical Use: To ensure detection of an extremely brief on-to-off transition of a digital input.

Details: • Standard digital only. For high-density digital, see Get & Clear HDD Module Off-Latches.
• Reads and re-arms the off-latch of a single digital input.
• The next time the input point changes from on to off, the off-latch will be set.
• Off-latches detect on-off-on input transitions that would otherwise occur too fast for the

control engine to detect, since they are processed by the I/O unit.
• If Argument 2 is a digital output and the latch is not set, the output will turn off. If the latch

is set, the output will turn on.

Arguments:

Standard
Example:

OptoScript
Example:

GetClearOffLatch(From Point)
ALARM_HORN = GetClearOffLatch(BUTTON_3_Latch);

This is a function command; it returns a value of true (non-zero) or false (0) indicating whether
the off latch has been set. The returned value can be consumed by a digital output (as in the
example shown) or by a variable, control structure, etc. See Chapter 11 of the ioControl User’s
Guide for more information.

Notes: The ability of the I/O units to detect fast input transitions is limited by the input module’s turn-on
and turn-off times. Check the specifications for the module to be used.

Dependencies: Applies only to standard digital inputs.

See Also: Get Off-Latch (page G-102), Clear Off-Latch (page C-26), Clear All Latches (page C-20)

Argument 1
From Point
Digital Input

Argument 2
Put in
Digital Output
Float Variable
Integer 32 Variable

Get & Clear Off-Latch
From Point BUTTON_3_LATCH Digital Input

Put in ALARM_HORN Digital Output
ioControl Command Reference G-25

Get & Clear On-Latch
Digital Point Action

Function: To read and re-arm a high-speed on-latch associated with a standard digital input.

Typical Use: To ensure detection of an extremely brief off-to-on transition of a digital input.

Details: • Standard digital only. For high-density digital, see Get & Clear HDD Module On-Latches.
• Reads and re-arms the on-latch of a single digital input.
• The next time the input point changes from off to on, the on-latch will be set.
• Off-latches detect on-off-on input transitions that would otherwise occur too fast for the

control engine to detect, since they are processed by the I/O unit.
• The value read is placed in the argument specified by the Put In parameter. If the latch is not

set, the argument will contain the value 0 (False). If the latch is set, the argument will be set
to non-zero (True).

Arguments:

Standard
Example:

OptoScript
Example:

GetClearOnLatch(From Point)
LATCH_VAR = GetClearOffLatch(E_STOP_BUTTON);

This is a function command; it returns a value of true (non-zero) or false (0) indicating whether
the on latch has been set. The returned value can be consumed by a variable (as in the example
shown) or by a digital output, control structure, etc. See Chapter 11 of the ioControl User’s Guide
for more information.

Notes: The ability of the I/O unit to detect fast input transitions is limited by the input module’s turn-on
and turn-off times. Check the specifications for the module to be used.

Dependencies: Applies only to standard digital inputs.

See Also: Get On-Latch (page G-106), Clear On-Latch (page C-27), Clear All Latches (page C-20)

Argument 1
From Point
Digital Input

Argument 2
Put in
Digital Output
Float Variable
Integer 32 Variable

Get & Clear On-Latch
From Point E_STOP_BUTTON Digital Input

Put in LATCH_VAR Integer 32 Variable
G-26 ioControl Command Reference

G

Get & Restart Off-Pulse Measurement
Digital Point Action

Function: To read and clear the off-time duration of a digital input that has had an on-off-on transition.

Typical Use: To shut down or process interlocking where a momentary pulse of a certain length is required.

Details: • Gets the duration of the first complete off-pulse applied to the digital input.
• Restarts the off-pulse measurement after reading the current value.
• Measurement starts on the first on-to-off transition and stops on the first off-to-on

transition.
• Returns a float value representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.
• If used while a measurement is in progress, the measurement is terminated, the data is

returned, and a new off-pulse measurement is started.

Arguments:

Standard
Example:

OptoScript
Example:

GetRestartOffPulseMeasurement(From Point)
OFF_TIME = GetRestartOffPulseMeasurement(STANDBY_SWITCH);

This is a function command; it returns the duration of the first complete off-pulse. The returned
value can be consumed by a variable (as shown) or by another item, such as a mathematical
expression or a control structure. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: • Use Get Off-Pulse Measurement Complete Status first to see if a complete off-pulse
measurement has occurred.

• The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: • Applies only to inputs configured with the off-pulse measurement feature.
• Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO

and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

See Also: Get Off-Pulse Measurement (page G-103), Get Off-Pulse Measurement Complete Status
(page G-104)

Argument 1
From Point
Off Pulse

Argument 2
Put in
Float Variable
Integer 32 Variable

Get & Restart Off-Pulse Measurement
From Point STANDBY_SWITCH Off Pulse

Put in OFF_TIME Float Variable
ioControl Command Reference G-27

Get & Restart Off-Time Totalizer
Digital Point Action

NOTE: This command is for mistic I/O units only.

Function: To read digital input total off time and restart.

Typical Use: To accumulate total off time of a device to possibly indicate down-time.

Details: • Reads the accumulated off time of a digital input since it was last reset.
• Returns a float representing seconds with a resolution of 100 microseconds.
• Resets the total to zero after execution.
• Maximum duration is 4.97 days.

Arguments:

Standard
Example:

OptoScript
Example:

GetRestartOffTimeTotalizer(From Point)
System_Down_Time = GetRestartOffTimeTotalizer(Power_Status);

This is a function command; it returns the total off-time of the digital input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

• Use Get Off-Time Totalizer to read the totalized value without resetting it.

Dependencies: • Applies only to inputs configured with the totalize-off feature.
• Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO

and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

See Also: Get Off-Time Totalizer (page G-105)

Argument 1
From Point
Off Totalizer

Argument 2
Put in
Float Variable
Integer 32 Variable

Get & Restart Off-Time Totalizer
From Point Power_Status Off Totalizer

Put in System_Down_Time Integer 32 Variable
G-28 ioControl Command Reference

G

Get & Restart On-Pulse Measurement
Digital Point Action

Function: To read and clear the on-time duration of a digital input that has had an off-on-off transition.

Typical Use: To shut down or process interlocking where a momentary pulse of a certain length is required.

Details: • Gets the duration of the first complete on-pulse applied to the digital input.
• Restarts the on-pulse measurement after reading the current value.
• Measurement starts on the first off-to-on transition and stops on the first on-to-off

transition.
• Returns a float value representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.
• If used while a measurement is in progress, the measurement is terminated, the data is

returned, and a new on-pulse measurement is started.

Arguments:

Standard
Example:

OptoScript
Example:

GetRestartOnPulseMeasurement(From Point)
On_Time = GetRestartOnPulseMeasurement(Standby_Switch);

This is a function command; it returns the duration of the first on-pulse. The returned value can
be consumed by a variable (as shown) or by another item, such as a mathematical expression or
a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • Use Get On-Pulse Measurement Complete Status first to see if a complete on-pulse
measurement has occurred.

• The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: • Applies only to inputs configured with the on-pulse measurement feature.
• Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO

and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

See Also: Get On-Pulse Measurement (page G-107), Get On-Pulse Measurement Complete Status
(page G-108)

Argument 1
From Point
Off Pulse

Argument 2
Put in
Float Variable
Integer 32 Variable

Get & Restart On-Pulse Measurement
From Point Standby_Switch On Pulse

Put in On_Time Float Variable
ioControl Command Reference G-29

Get & Restart On-Time Totalizer
Digital Point Action

NOTE: This command is for mistic I/O units only.

Function: To read digital input total on time and restart.

Typical Use: To accumulate total on time of a device.

Details: • Reads the accumulated on time of a digital input since it was last reset.
• Returns a float representing seconds with a resolution of 100 microseconds.
• Resets the total to zero after execution.
• Maximum duration is 4.97 days.

Arguments:

Standard
Example:

OptoScript
Example:

GetRestartOnTimeTotalizer(From Point)
Motor_Runtime = GetRestartOnTimeTotalizer(Circ_Motor_Pwr);

This is a function command; it returns the total on-time of the digital input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

• Use Get On-Time Totalizer to read the totalized value without resetting it.

Dependencies: • Applies only to inputs configured with the totalize-on feature.
• Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO

and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

See Also: Get On-Time Totalizer (page G-109)

Argument 1
From Point
On Totalizer

Argument 2
Put in
Float Variable
Integer 32 Variable

Get & Restart On-Time Totalizer
From Point Circ_Motor_Pwr On Totalize

Put in Motor_Runtime Integer 32 Variable
G-30 ioControl Command Reference

G

Get & Restart Period
Digital Point Action

NOTE: This command is for mistic I/O units only.

Function: To read and clear the elapsed time during an on-off-on or an off-on-off transition of a digital input.

Typical Use: To measure the period of a slow shaft rotation.

Details: • Reads the period value of a digital input and places it in the argument specified by the
Put In parameter.

• Measurement starts on the first transition (either off-to-on or on-to-off) and stops on the
next transition of the same type (one complete cycle).

• Restarts the period measurement after reading.
• Returns a float representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.

Arguments:

Standard
Example:

OptoScript
Example:

GetRestartPeriod(From Point)
SHAFT_CYCLE = GetRestartPeriod(SHAFT_INPUT);

This is a function command; it returns the period. The returned value can be consumed by a
variable (as shown) or by another item, such as a mathematical expression or a control structure.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • This command should be used to start the period measurement.
• This command measures the first complete period only and restarts.
• The accuracy of the value returned is limited by the input module’s turn-on and turn-off

times. Check the specifications for the module to be used.

Dependencies: • Applies only to inputs configured with the period feature.
• Available on mistic multifunction I/O units. For a list of mistic multifunction brains, see the

Appendix Opto 22 Brain Families.

See Also: Get Period (page G-110)

Argument 1
From Point
Period

Argument 2
Put in
Float Variable
Integer 32 Variable

Get & Restart Period
From Point SHAFT_INPUT Period

Put in SHAFT_CYCLE Integer 32 Variable
ioControl Command Reference G-31

Get All HDD Module Off-Latches
High Density Digital Module Action

Function: To read the off-latches for all points on all high-density digital input modules on one I/O unit.

Typical Use: To get off-latches for all high-density digital points on the I/O unit with a single command,
without clearing the latches.

Details: • Works only on high-density digital modules, not on standard digital modules.
• Places all off-latch data as bitmasks in an integer 32 table at a designated starting index.

Argument 2 sets the index number and Argument 3 indicates the table.
• The table that receives the data must contain at least 16 elements after the starting index.

(If the table is not large enough, an error -3 is returned.) Data for the module in position zero
is placed in the first specified table element, with other modules following in order. If a slot
does not contain a high-density digital module, its corresponding table element is
zero-filled.

Arguments:

Standard
Example:

For example, if the I/O unit UIO_A consists of an 8-module rack with an analog module in slot 0
and HDD modules in slots 1–7, table Bldg_A_OffLatches might be filled as follows:

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result In
Integer 32 Table

Argument 4
Put Status In
Integer 32 Variable

Get All HDD Module Off-Latches
I/O Unit UIO_A SNAP-UP1-ADS

Start Index 0 Integer 32 Literal
Put Result In Bldg_A_OffLatches Integer 32 Table
Put Status in Status_Code Integer 32 Variable

 Index Value (Bitmask)

0 00000000000000000000000000000000 (This module is not a HDD module.)

1 01100001010001110000001010110010 Each index contains the off-latch data for the
HDD module in the corresponding position on
the rack. A value of 1 indicates that the
off-latch is on (set); a value of 0 indicates that
it is off (not set). The least significant bit
corresponds to point zero on the module.
In this example, index 2, which contains the
off-latch data for all points on the module in
slot 2, shows that off-latches for points 0, 1,2,
10, 14, and 19 are on. All others are off.

2 00000000000010000100010000000111

3 00100000011000000010010001000100

4 01100001010001110000001010110010

5 00001110000100001100100000001001

6 10000000110000011100000000100100

7 00110000011100001111100000000001
G-32 ioControl Command Reference

G

OptoScript
Example:

GetAllHddModuleOffLatches(I/O Unit, Start Index, Put Result In)
Status_Code = GetAllHddModuleOffLatches(UIO_A, 0, Bldg_A_OffLatches);

This is a function command; it returns one of the status codes shown below.

Notes: • To read the off-latches on only one HDD module, use Get HDD Module Off-Latches. To read
and clear off-latches, use Get & Clear All HDD Module Off-Latches.

• You can manipulate bits within the table using commands such as Numeric Table Element
Bit Test, or move the data in one element to a variable and use commands such as Bit Test.

• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,
and see form #1547, the SNAP High-Density Digital Module User’s Guide.

Status Codes: 0 = Success
-3 = Invalid table length.
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get HDD Module Off-Latches (page G-58), Get & Clear All HDD Module Off-Latches (page G-10),
Numeric Table Element Bit Test (page N-8), Bit Test (page B-17), and other Bit commands.

8 00000000000000000000000000000000 The remainder of the table is zero-filled, since
there are no more modules.

15 00000000000000000000000000000000

 Index Value (Bitmask)
ioControl Command Reference G-33

Get All HDD Module On-Latches
High Density Digital Module Action

Function: To read the on-latches for all points on all high-density digital input modules on one I/O unit.

Typical Use: To get on-latches for all high-density digital points on the I/O unit with a single command,
without clearing the latches.

Details: • Works only on high-density digital input modules, not on standard digital modules.
• Places all on-latch data as bitmasks in an integer 32 table at a designated starting index.

Argument 2 sets the index number and Argument 3 indicates the table.
• The table that receives the data must contain at least 16 elements after the starting index.

(If the table is not large enough, an error -3 is returned.) Data for the module in position zero
is placed in the first specified table element, with other modules following in order. If a slot
does not contain a high-density digital module, its corresponding table element is
zero-filled.

Arguments:

Standard
Example:

For example, if the I/O unit UIO_A consists of an 8-module rack with an analog module in slot 0
and HDD modules in slots 1–7, table Bldg_A_OnLatches might be filled as follows:

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result In
Integer 32 Table

Argument 4
Put Status In
Integer 32 Variable

Get All HDD Module On-Latches
I/O Unit UIO_A SNAP-UP1-ADS

Start Index 0 Integer 32 Literal
Put Result In Bldg_A_OnLatches Integer 32 Table
Put Status in Status_Code Integer 32 Variable

 Index Value (Bitmask)

0 00000000000000000000000000000000 (This module is not a HDD module.)

1 01100001010001110000001010110010 Each index contains the on-latch data for the
HDD module in the corresponding position on
the rack. A value of 1 indicates that the
on-latch is on (set); a value of 0 indicates that
it is off (not set). The least significant bit
corresponds to point zero on the module.
In this example, index 2, which contains the
on-latch data for all points on the module in
slot 2, shows that on-latches for points 0, 1, 2,
10, 14, and 19 are on. All others are off.

2 00000000000010000100010000000111

3 00100000011000000010010001000100

4 01100001010001110000001010110010

5 00001110000100001100100000001001

6 10000000110000011100000000100100

7 00110000011100001111100000000001
G-34 ioControl Command Reference

G

OptoScript
Example:

GetAllHddModuleOnLatches(I/O Unit, Start Index, Put Result In)
Status_Code = GetAllHddModuleOnLatches(UIO_A, 0, Bldg_A_OnLatches);

This is a function command; it returns one of the status codes shown below.

Notes: • To read the on-latches on only one HDD module, use Get HDD Module On-Latches. To read
and clear on-latches, use Get & Clear All HDD Module On-Latches.

• You can manipulate bits within the table using commands such as Numeric Table Element
Bit Test, or move the data in one element to a variable and use commands such as Bit Test.

• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,
and see form #1547, the SNAP High-Density Digital Module User’s Guide.

Status Codes: 0 = Success
-3 = Invalid table length.
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get HDD Module On-Latches (page G-60), Get & Clear All HDD Module On-Latches (page G-12),
Numeric Table Element Bit Test (page N-8), Bit Test (page B-17), and other Bit commands.

8 00000000000000000000000000000000 The remainder of the table is zero-filled, since
there are no more modules.

15 00000000000000000000000000000000

 Index Value (Bitmask)
ioControl Command Reference G-35

Get All HDD Module States
High Density Digital Module Action

Function: To read the states of all points on all high-density digital input or output modules on one I/O unit.

Typical Use: To get the states for all high-density digital points on the I/O unit with a single command.

Details: • Works only on high-density digital modules, not on standard digital modules.
• Places all status data as bitmasks in an integer 32 table at a designated starting index.

Argument 2 sets the index number and Argument 3 indicates the table.
• The table that receives the data must contain at least 16 elements after the starting index.

(If the table is not large enough, an error -3 is returned.) Data for the module in position zero
is placed in the first specified table element, with other modules following in order. If a slot
does not contain a high-density digital module, its corresponding table element is
zero-filled.

Arguments:

Standard
Example:

For example, if the I/O unit UIO_A consists of an 8-module rack with an analog module in slot 0
and HDD modules in slots 1–7, table Bldg_A_Status might be filled as follows:

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result In
Integer 32 Table

Argument 4
Put Status In
Integer 32 Variable

Get All HDD Module States
I/O Unit UIO_A SNAP-UP1-ADS

Start Index 0 Integer 32 Variable
Put Result In Bldg_A_Status Integer 32 Table
Put Status in Status_Code Integer 32 Variable

 Index Value (Bitmask)

0 00000000000000000000000000000000 (This module is not a HDD module.)

1 01100001010001110000001010110010 Each index contains the status data for the
HDD module in the corresponding position on
the rack. A value of 1 indicates that the point
is on; a value of 0 indicates that it is off. The
least significant bit in the mask corresponds to
point zero on the module.
In this example, index 2, which contains the
status of all points on the module in slot 2,
shows that points 0, 1, 2, 10, 14, and 19 are
on. All other points on the module are off.

2 00000000000010000100010000000111

3 00100000011000000010010001000100

4 01100001010001110000001010110010

5 00001110000100001100100000001001

6 10000000110000011100000000100100

7 00110000011100001111100000000001
G-36 ioControl Command Reference

G

OptoScript
Example:

GetAllHddModuleStates(I/O Unit, Start Index, Put Result In)
Status_Code = GetAllHddModuleStates(UIO_A, 0, Bldg_A_Status);

This is a function command; it returns one of the status codes shown below.

Notes: • To read the points on only one HDD module, use Get HDD Module States.
• You can manipulate bits within the table using commands such as Numeric Table Element

Bit Test, or move the data in one element to a variable and use commands such as Bit Test.
• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,

and see form #1547, the SNAP High-Density Digital Module User’s Guide.

Status Codes: 0 = Success
-3 = Invalid table length.
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get HDD Module States (page G-61), Set HDD Module from MOMO Masks (page S-23), Numeric
Table Element Bit Test (page N-8), Bit Test (page B-17), and other Bit commands.

8 00000000000000000000000000000000 The remainder of the table is zero-filled, since
there are no more modules.

15 00000000000000000000000000000000

 Index Value (Bitmask)
ioControl Command Reference G-37

Get Analog Filtered Value
Analog Point Action

Function: To read the digitally filtered input value of a specified analog channel.

Typical Use: To smooth noisy or erratic signals.

Details: • Digital filtering must be activated before using this command by using Set Analog
Filter Weight.

• Digital filtering, if activated, is performed at the I/O unit. The analog input point is sampled
10 times a second with the filtered value stored locally on the I/O unit.

• The unfiltered analog input is still available using standard analog commands.

Arguments:

Standard
Example:

OptoScript
Example:

GetAnalogFilteredValue(From)
FILTERED_TEMP = GetAnalogFilteredValue(TEMP_SENSOR);

This is a function command; it returns the filtered value of the analog input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • Use Set Analog Filter Weight to restart filtering after a value of -32,768 is returned.
• To ensure that digital filtering will always be active, store changeable I/O unit values (such

as filter weight) in permanent memory at the I/O unit. (You can do so through Debug mode.)

Dependencies: Before using this command, Set Analog Filter Weight must be issued. Otherwise, a value of
-32,768 will be returned to indicate an error.

Result Data: Channels without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

See Also: Get & Clear Analog Filtered Value (page G-14), Set Analog Filter Weight (page S-7)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Analog Filtered Value
From TEMP_SENSOR Analog Input
Put in FILTERED_TEMP Float Variable
G-38 ioControl Command Reference

G

Get Analog Maximum Value
Analog Point Action

Function: To retrieve the peak value of a specified analog input since its last reading.

Typical Use: To capture the peak pressure over a given period of time.

Details: • The current value for each point is regularly read and stored at the I/O unit. Check the
specifications for the module and I/O unit to be used if high-speed readings are required.

• Min and max values are recorded at the I/O unit immediately after the current value
is updated.

Arguments:

Standard
Example:

OptoScript
Example:

GetAnalogMaxValue(From)
MAX_KPA = GetAnalogMaxValue(PRES_SENSOR);

This is a function command; it returns the maximum value of the analog input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • Use Get & Clear Analog Maximum Value to clear the max value before actual readings
commence.

• The value returned will be the highest value recorded on this point since the last time the
maximum value was cleared, or since the unit was turned on.

• Points without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

See Also: Get & Clear Analog Maximum Value (page G-15), Get & Clear Analog Minimum Value
(page G-16), Get Analog Minimum Value (page G-40)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Analog Maximum Value
From PRES_SENSOR Analog Input
Put in MAX_KPA Float Variable
ioControl Command Reference G-39

Get Analog Minimum Value
Analog Point Action

Function: To retrieve the lowest value of a specified analog input since its last reading.

Typical Use: To capture the lowest pressure over a given period of time.

Details: • The current value for each point is regularly read and stored at the I/O unit. Check the
specifications for the module and I/O unit to be used if high-speed readings are required.

• Min and max values are recorded at the I/O unit immediately after the current value
is updated.

Arguments:

Standard
Example:

OptoScript
Example:

GetAnalogMinValue(From)
MIN_KPA = GetAnalogMinValue(PRES_SENSOR);

This is a function command; it returns the minimum value of the analog input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • Use Get & Clear Analog Minimum Value to clear the min value before actual readings
commence.

• The value returned will be the lowest value recorded since the last time the minimum value
was reset or since the unit was turned on.

• Points without a module installed or with a thermocouple module that has an open
thermocouple will return a value of -32,768 to indicate an error.

See Also: Get & Clear Analog Minimum Value (page G-16), Get & Clear Analog Maximum Value
(page G-15), Get Analog Maximum Value (page G-39)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Analog Minimum Value
From PRES_SENSOR Analog Input
Put in MIN_KPA Float Variable
G-40 ioControl Command Reference

G

Get Analog Square Root Filtered Value
Analog Point Action

Function: To read and linearize the digitally filtered input value of a flow signal from a differential pressure
(DP) transmitter.

Typical Use: To smooth noisy or erratic signals from a DP transmitter connected to an orifice plate or
venturi tube.

Details: • Automatically linearizes flow values from DP transmitters (which require square root
extraction) to engineering units.

• Digital filtering must be activated before using this command by using Set Analog
Filter Weight.

• Digital filtering, if activated, is performed at the I/O unit. The input point is sampled 10 times
a second.

• The unfiltered analog input is still available using standard analog commands.

Arguments:

Standard
Example:

OptoScript
Example:

GetAnalogSquareRootFilteredValue(From)
Filtered_Flow = GetAnalogSquareRootFilteredValue(DP_FLOW_XMTR);

This is a function command; it returns the square root of the filtered value. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • Use Set Analog Filter Weight to restart filtering after a value of -32,768 is returned.
• To ensure that filtering will always be active, store the filter value in permanent memory at

the I/O unit. (You can do so through Debug mode.)
• Do not issue this command more than 10 times per second. Doing so will degrade the

performance speed of the analog I/O unit.

Dependencies: Before using this command, Set Analog Filter Weight must be executed. Otherwise, a value of
-32,768 will be returned to indicate an error.

Result Data: Channels without a module installed will return a value of -32,768 to indicate an error.

See Also: Get Analog Square Root Value (page G-42), Set Analog Filter Weight (page S-7)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Analog Square Root Filtered Value
From DP_FLOW_XMTR Analog Input
Put in Filtered_Flow Float Variable
ioControl Command Reference G-41

Get Analog Square Root Value
Analog Point Action

Function: To read and linearize the analog input value of a flow signal from a differential pressure (DP)
transmitter.

Typical Use: To linearize flow signals from a DP transmitter connected to an orifice plate or venturi tube.

Details: • Automatically linearizes flow values from DP transmitters (which require square root
extraction) to engineering units.

Arguments:

Standard
Example:

OptoScript
Example:

GetAnalogSquareRootValue(From)
FLOW_RATE = GetAnalogSquareRootValue(DP_FLOW_XMTR);

This is a function command; it returns the square root of the value from the analog input. The
returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide for
more information.

Notes: Do not issue this command more than 10 times per second. Doing so will degrade the
performance speed of the analog I/O unit.

Result Data: Channels without a module installed will return a value of -32,768 to indicate an error.

See Also: Get Analog Square Root Filtered Value (page G-41)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Analog Square Root Value
From DP_FLOW_XMTR Analog Input
Put in FLOW_RATE Float Variable
G-42 ioControl Command Reference

G

Get Analog Totalizer Value
Analog Point Action

NOTE: This command is for mistic I/O units only.

Function: To read the totalized (integrated) value of a specified analog input.

Typical Use: To examine a flow total that has been accumulating at the I/O unit to determine when to clear it.

Details: • Totalizing is performed at the I/O unit by sampling the input point and storing the total value
locally on the I/O unit.

• The sample rate is set using the Set Analog Totalizer Rate Command.
• Totalizing will be bidirectional if the input range is -10 to +10, for example.
• Totalizing will stop when the total reaches either limit. Totalizing will resume after using

Get & Clear Analog Totalizer Value.
• Totalizing will stop when an input channel is too far under range. Totalizing will resume

when the input signal is back within range.

Arguments:

Standard
Example:

OptoScript
Example:

GetAnalogTotalizerValue(From)
Total_Barrels = GetAnalogTotalizerValue(Flow_Rate);

This is a function command; it returns the totalized value of the analog input. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See Notes for Set Analog Totalizer Rate before using this command.
• Use Get & Clear Analog Totalizer Value to clear the total before actual readings commence.
• Use this command periodically to simply “watch” the total. When it exceeds 30,000, use

Get & Clear Analog Totalizer Value to capture the total to a float variable and reset it to zero.

Dependencies: Before using this command, Set Analog Totalizer Rate must be executed. Otherwise, a value of
-32,768 will be returned to indicate an error.

Result Data: • The value returned will be an integer from -32,768 to 32,767.
• Channels without a module installed will return a value of -32,768 to indicate an error.

See Also: Get & Clear Analog Totalizer Value (page G-17), Set Analog Totalizer Rate (page S-12)

Argument 1
From
Analog Input

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Analog Totalizer Value
From Flow_Rate Analog Input
Put in Total_Barrels Float Variable
ioControl Command Reference G-43

Get Available File Space
Control Engine Action

Function: To determine how much file space is currently available in the file system.

Typical Use: To make sure there is sufficient file space available before writing data to a file.

Details: • In Argument 1, show whether file space data should be returned in bytes or megabytes:
- 0 = return units of bytes
- 1 = return units of megabytes (1048576 bytes)

• The maximum number of files is limited only by available memory. Each file uses 516 bytes
of overhead plus its number of bytes rounded up to the nearest multiple of 516 bytes.

• The maximum amount of memory available in the control engine's file system is
approximately 2 MB on a SNAP-PAC-R controller or SNAP Ultimate brain, 2.5 on a
SNAP-PAC-S controller, and 1 MB on a SNAP-LCE controller (varies slightly depending on the
control engine firmware version).

Arguments:

Standard
Example:

OptoScript
Example:

GetAvailableFileSpace(FileSystemType)
File_Space = GetAvailableFileSpace(0);

This is a function command; it returns the size of file space available (a positive value, in units
specified by Argument 1), or it returns a status code (a negative value, as shown below). The
returned value can be consumed by a variable as shown in the example or by another item, such
as a mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide
for more information.

Notes: • See “Using the Control Engine’s File System” in the Communication Commands section of
Chapter 10 in the ioControl User’s Guide.

• Use Get & Clear Analog Minimum Value to clear the min value before actual readings
commence.

• For a quick check of the available file space on your device in Debug mode, you don’t need to
use this command. Instead, double-click the control engine’s name in the Strategy Tree and
look at File Space Avail. in the Inspect dialog box.

Status Codes: -36 = Feature not implemented (file system type not supported with the type of hardware in use).

See Also: Erase Files in Permanent Storage (page E-18), Load Files From Permanent Storage (page L-7),
Get Number of Characters Waiting (page G-101)

Argument 1
File System Type
Integer 32 Literal
Integer 32 Variable

Argument 2
Put result in
Integer 32 Variable

Get Available File Space
File System Type 0 Integer 32 Literal

Put result in File_Space Integer 32 Variable
G-44 ioControl Command Reference

G

Get Chart Status
Chart Action

Function: To determine the current status of a specified chart.
Typical Use: To determine in detail the current status of a chart.

Details: • Status is returned as a 32-bit integer or float. Applicable bits are 0–3:
– Bit 0: Running Mode (0 = chart is stopped; 1 = chart is running)
– Bit 1: Suspended Mode (0 = chart is not suspended; 1 = chart is suspended)
– Bit 2: Step Mode (0 = chart is not being stepped through;
1 = chart is being stepped through)
– Bit 3: Break Mode (0 = chart does not have break points defined;
1 = chart has break points defined)

• Bits 4–31 are reserved for Opto 22 use.
• Running Mode is on whenever a chart is running.
• Suspended Mode is on whenever a chart is suspended from Running Mode.
• Step Mode is on whenever a chart is being automatically or manually stepped through.
• Break Mode is on whenever a chart has a break point defined in one or more of its blocks.
• A chart that has never been started is considered stopped. A chart that is not suspended is

either running or stopped.

Arguments:

Standard
Example:

OptoScript
Example:

GetChartStatus(Chart)
STATUS = GetChartStatus(CHART_A);

This is a function command; it returns the status of the chart. The returned value can be
consumed by a variable (as shown) or by another item, such as a control structure. See Chapter
11 of the ioControl User’s Guide for more information.

Notes: • Bit testing (rather than number testing) should be used to determine the current status, since
a chart can simultaneously have multiple bits set at once. For example:

– Break Mode, Bit 3 = 1
– Step Mode, Bit 2 = 1
– Running Mode, Bit 0 = 1
– Reserved Bits, Bits 4–31 can have any value

• Avoid putting the returned status into a float variable, since the bits cannot be tested.

See Also: Chart Stopped? (page C-10), Chart Running? (page C-9), Bit Test (page B-17)

Argument 1
Chart
Chart

Argument 2
Put Status in
Float Variable
Integer 32 Variable

Get Chart Status
Chart CHART_A Chart

Put Status in STATUS Integer 32 Variable
ioControl Command Reference G-45

Get Communication Handle Value
Communication Action

Function: Returns a string that is the current value (the parameters) of the communication handle.

Typical Use: To find out the current communication parameters for a communication handle.

Arguments:

Standard
Example:

OptoScript
Example:

GetCommunicationHandleValue(From, To)
GetCommunicationHandleValue(COMM_B, COMM_VALUE);

This is a procedure command; it does not return a value.

See Also: Set Communication Handle Value (page S-15)

Get Control Engine Address
Control Engine Action

Function: Returns the address of the control engine as a string.

Typical Use: To identify a specific control engine. Used in peer-to-peer communication to identify the origin of
a message.

Details: • For control engines that use IP addressing, the address will be in the format 10.20.30.40
• The returned address is typically preprended to a string or used as the first element of a

table.

Arguments:

Standard
Example:

OptoScript
Example:

GetControlEngineAddress()
GetControlEngineAddress(Address_Code);

Argument 1
From
Communication Handle

Argument 2
To
String Variable

Get Communication Handle Value
From COMM_B Communication Handle

To COMM_VALUE String Variable

Argument 1
Put in
String Variable

Get Control Engine Address
Put in Address_Code String Variable
G-46 ioControl Command Reference

G

This is a procedure command; it does not return a value.

See Also: Get Control Engine Type (page G-47), Get Firmware Version (page G-55)

Get Control Engine Type
Control Engine Action

Function: Returns a numeric code unique to the control engine type.

Typical Use: In programs that must configure themselves according to the control engine type in which they
are running.

Details: • Primarily used in factory QA testing.
• Returns 402 for all types of SNAP Ultimate I/O brains.
• Returns 403 for SNAP-LCE controllers.
• Returns 512 for SNAP-PAC-S controllers.

Arguments:

Standard
Example:

OptoScript
Example:

GetEngineType()
TYPE_CODE = GetEngineType();

This is a function command; it returns a value indicating the control engine type. The returned
value can be consumed by a variable (as shown) or by another item, such as a control structure.
See Chapter 11 of the ioControl User’s Guide for more information.

See Also: Get Control Engine Address (page G-46), Get Firmware Version (page G-55)

Argument 1
Put in
Float Variable
Integer 32 Variable

Get Control Engine Type
Put in TYPE_CODE Integer 32 Variable
ioControl Command Reference G-47

Get Counter
Digital Point Action

Function: To read a standard digital input counter or quadrature counter value.

Typical Use: To count pulses from turbine flow meters, magnetic pickups, encoders, proximity switches, etc.

Details: • Standard digital only. For high-density digital, see Get HDD Module Counters.
• Reads the current value of a digital input counter or quadrature counter and places it in the

Put In parameter.
• Does not reset the counter or quadrature counter at the I/O unit to zero.
• Does not stop the counter or quadrature counter from continuing to count.
• Valid range for a counter is 0 to 2,147,483,647 counts.
• Valid range for a quadrature counter is -2,147,483,647 to 2,147,483,648 counts.

Arguments:

Standard
Example:

OptoScript
Example:

GetCounter(From Point)
Number_of_Bottles = GetCounter(Bottle_Counter);

This is a function command; it returns the counter or quadrature counter value of the digital input.
The returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide for
more information.

Notes: • The maximum speed at which the counter can operate is limited by the input module’s
turn-on and turn-off times. Check the specifications for the module to be used.

Dependencies: • Always use Start Counter once before using this command for the first time.
• Applies only to standard digital inputs configured with the counter or quadrature counter

feature.

See Also: Get & Clear Counter (page G-18), Start Continuous Square Wave (page S-94), Stop Counter
(page S-101), Clear Counter (page C-22)

Argument 1
From Point
Counter
Quadrature Counter

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Counter
From Point Bottle_Counter Counter

Put in Number_of_Bottles Float Variable
G-48 ioControl Command Reference

G

Get Day
Time/Date Action

Function: To read the day of the month (1 through 31) from the control engine’s real-time clock/calendar
and put it into a numeric variable.

Typical Use: To trigger an event in an ioControl program based on the day of the month.

Details: • The destination variable can be an integer or a float, although an integer is preferred.
• If the current date is March 2, 2002, this action would place the value 2 into the Put In

parameter (Argument 1).

Arguments:

Standard
Example:

OptoScript
Example:

GetDay()
Day_of_Month = GetDay();

This is a function command; it returns the numerical day of the month. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • This is a one-time read of the day of the month. If the date changes, you will need to execute
this command again to get the current day of the month.

• To detect the start of a new day, use Get Day and put the result into a variable called
DAY_OF_MONTH. Do this once in the Powerup chart and then continually in another chart.
In this other chart, move DAY_OF_MONTH to LAST_DAY_OF_MONTH just before executing
Get Day, then compare DAY_OF_MONTH with LAST_DAY_OF_MONTH using Not Equal?
When they are not equal, midnight has just occurred.

See Also: Get Day of Week (page G-50), Get Hours (page G-63), Get Minutes (page G-86), Get Month
(page G-97), Get Seconds (page G-135), Get Year (page G-145), Set Day (page S-17), Set Hours
(page S-25), Set Minutes (page S-43), Set Month (page S-57), Set Seconds (page S-78), Set Year
(page S-89)

Argument 1
Put in
Float Variable
Integer 32 Variable

Get Day
Put In Day_of_Month Integer 32 Variable
ioControl Command Reference G-49

Get Day of Week
Time/Date Action

Function: To read the number of the day of the week (0 through 6) from the control engine’s real-time
clock/calendar and put it into a numeric variable.

Typical Use: To trigger an event in an ioControl program based on the day of the week.

Details: • The destination variable can be an integer or a float, although an integer is preferred.

Days are numbered as follows:

Sunday = 0
Monday = 1
Tuesday = 2
Wednesday = 3
Thursday = 4
Friday = 5
Saturday = 6

• If the current day is a Wednesday, this action would place the value 3 into the Put In
parameter (Argument 1).

Arguments:

Standard
Example:

OptoScript
Example:

GetDayOfWeek()
Day_of_Week = GetDayOfWeek();

This is a function command; it returns a number indicating the day of the week. The returned
value can be consumed by a variable (as shown) or by another item, such as a mathematical
expression or a control structure. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: • This is a one-time read of the day of the week. If the day changes, you will need to execute
this command again to get the current day of the week.

• It is advisable to use this action once in the Powerup chart and once after midnight rollover
thereafter. See Notes for Get Day.

See Also: Get Day (page G-49), Get Hours (page G-63), Get Minutes (page G-86), Get Month (page G-97),
Get Seconds (page G-135), Get Year (page G-145), Set Day (page S-17),, Set Minutes (page S-43),
Set Month (page S-57), Set Seconds (page S-78), Set Year (page S-89)

Argument 1
Put in
Float Variable
Integer 32 Variable

Get Day of Week
Put In Day_of_Week Integer 32 Variable
G-50 ioControl Command Reference

G

Get End-Of-Message Terminator
Communication Action

Function: To find out the end-of-message (EOM) character currently set for a specific communication
handle.

Typical Use: To make sure the communication handle’s EOM character is set as needed.

Details: • The communication handle must already be opened for the command to take effect. Use the
command Open Outgoing Communication to open the handle.

• The character is represented by an ASCII value (see the ASCII table under “String
Commands” in Chapter 10 of the ioControl User’s Guide). For example, a space is a character
32 and a “1” is a character 49.

• The default end-of-message character is 13 (carriage return).

Arguments:

Standard
Example:

OptoScript
Example:

GetEndOfMessageTerminator(Communication Handle, Put Status In)
EOM_Term = GetEndOfMessageTerminator(UIO_A);

This is a function command; it returns the current EOM character or a status code of -52, if the
communication handle has not been opened. The returned value can be consumed by a variable
(as in the example shown) or by a control structure, mathematical expression, etc. See
Chapter 11 of the ioControl User’s Guide for more information.

Status Codes: -52 = Invalid connection—not opened.

See Also: Set End-Of-Message Terminator (page S-22), Open Outgoing Communication (page O-4)

Argument 1
Communication Handle
Communication Handle

Argument 2
Put Status In
Integer 32 Variable

Get End-Of-Message Terminator
Communication Handle UIO_A Communication Handle

Put Status In EOM_Term Integer 32 Variable
ioControl Command Reference G-51

Get Error Code of Current Error
Error Handling Action

Function: To return the oldest error code in the message queue.

Typical Use: To allow a chart to perform error handling.

Details: • Returns a zero if the queue is empty.
• The same error code is read each time unless Remove Current Error and Point to Next Error

is used first.
• The message queue holds a total of 1000 errors and messages.
• See the Errors Appendix in the ioControl User’s Guide for a list of errors that may appear in

the message queue.

Arguments:

Standard
Example:

OptoScript
Example:

GetErrorCodeOfCurrentError()
ERROR_CODE = GetErrorCodeOfCurrentError();

This is a function command; it returns the code for the oldest error in the message queue. The
returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide for
more information.

Notes: • Use Remove Current Error and Point to Next Error to drop the oldest error from the queue so
the next error can be evaluated.

• For detailed information, use Control Engine➞Inspect in Debug mode to view the message
queue.

See Also: Clear All Errors (page C-18), Get Error Count (page G-53), Remove Current Error and Point to Next
Error (page R-22)

Argument 1
Put in
Float Variable
Integer 32 Variable

Get Error Code of Current Error
Put in ERROR_CODE Integer 32 Variable
G-52 ioControl Command Reference

G

Get Error Count
Error Handling Action

Function: To determine the number of errors in the message queue.

Typical Use: To allow an error handling chart to determine that there are no more errors to process.

Details: • The queue holds a total of 1000 errors and messages.
• Returns a zero if the queue is empty.

Arguments:

Standard
Example:

OptoScript
Example:

GetErrorCount()
ERROR_COUNT = GetErrorCount();

This is a function command; it returns the number of errors in the message queue. The returned
value can be consumed by a variable (as shown) or by another item, such as a mathematical
expression or a control structure. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: • To eliminate all errors from the queue, use Clear All Errors.
• Use Debug mode to view the message queue for detailed information.

See Also: Clear All Errors (page C-18), Get Error Code of Current Error (page G-52), Remove Current Error
and Point to Next Error (page R-22)

Argument 1
Put in
Float Variable
Integer 32 Variable

Get Error Count
Put in ERROR_COUNT Integer 32 Variable
ioControl Command Reference G-53

Get Event Latches
Event/Reaction Action

Function: Gets all event latches in the specified group.

Typical Use: To get all event latches in the specified group with one command rather than issuing a separate
command for each one.

Details: • There can be up to 16 event/reaction groups, each containing as many as 16 event latches. If
all related event latches are in the same group, this command could be quite useful.

• The value returned is an integer with the lower 16 bits representing the 16 latches in the
group. If the variable has a value greater than zero, one or more latches are set.

Arguments:

Standard
Example:

OptoScript
Example:

GetEventLatches(E/R Group)
Group_Latch_Status = GetEventLatches(ER_E_STOP_GROUP_A);

This is a function command; it returns a bitmask representing the status of event latches in the
event/reaction group. The returned value can be consumed by a variable (as shown) or by another
item, such as a control structure. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: Bit Test could be used to test each of the lower 16 bits numbered 0–15.

See Also: Get & Clear Event Latches (page G-19)

Argument 1
Event/Reaction Group
Event/Reaction Group

Argument 2
Put in
Integer 32 Variable

Get Event Latches
Event/Reaction Group ER_E_STOP_GROUP_A

Put in Group_Latch_Status Integer 32 Variable
G-54 ioControl Command Reference

G

Get Firmware Version
Control Engine Action

Function: Returns a string containing the firmware (kernel) version.

Typical Use: In programs that must configure themselves according to the firmware version under which they
are running.

Details: The returned string will be in the format R1.0a.

Arguments:

Standard
Example:

OptoScript
Example:

GetFirmwareVersion(Put in)
GetFirmwareVersion(REV_CODE);

This is a procedure command; it does not return a value.

See Also: Get Control Engine Type (page G-47)

Argument 1
Put in
String Variable

Get Firmware Version
Put in REV_CODE String Variable
ioControl Command Reference G-55

Get Frequency
Digital Point Action

NOTE: This command is for mistic I/O units only.

Function: To read digital input frequency value.

Typical Use: To read the speed of rotating machinery, velocity encoders, etc.

Details: • Reads the current frequency unit of a digital input and places it in the Put In parameter.
• Returns an integer value from 0 to 65,535 (see Notes below).
• The default unit is 1 Hertz (see Notes below).
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

OptoScript
Example:

GetFrequency(From Point)
MOTOR_SPEED = GetFrequency(SHAFT_PICKUP);

This is a function command; it returns the frequency units value of the digital input. The returned
value can be consumed by a variable (as shown) or by another item, such as a mathematical
expression or a control structure. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: • Since the the default resolution is 1 Hertz, significant errors may be encountered at
frequencies less than 100 Hertz. Use Get Period, then divide 1 by the period to get the
frequency with resolution to 0.2 Hertz at 60 Hertz.

• If you change the unit to 10 Hertz, you will need to multiply the returned value by 10.

Example 1: Unit is set to 1Hz units. You call this command, and receive a value of 57. The
frequency = 57 x 1Hz = 57Hz

Example 2: Unit is set to 10Hz units. You call this command, and receive a value of 57. The
frequency = 57 x 10Hz = 570Hz

• The maximum frequency that can be read is limited by the input module’s turn-on and
turn-off times. Check the specifications for the module to be used.

Dependencies: Applies only to inputs configured with the frequency feature.

Argument 1
From Point
Frequency

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Frequency
From Point SHAFT_PICKUP Frequency

Put in MOTOR_SPEED Integer 32 Variable
G-56 ioControl Command Reference

G

Get HDD Module Counters
High Density Digital Module Action

Function: To read the counters for all points on a high-density digital input module.

Typical Use: To get counts without clearing them.

Details: • Works only on high-density digital modules, not on standard digital modules.
• Places counter data for all points in the module in an integer 32 table at a designated

starting index. Argument 3 sets the index number and Argument 4 indicates the table.
• The table that receives the data must contain at least 32 elements after the starting index.

(If the table is not large enough, an error -3 is returned.) Data for point zero is placed in the
first specified table element, with other points following in order.

Arguments:

Standard
Example:

For example, the first four elements of the Rotations table might be filled as follows:

OptoScript
Example:

GetHddModuleCounters(I/O Unit, Module Number, Start Table Index, Put Result In)
Status_Code = GetHddModuleCounters(Installation_42, 10, 0, Rotations);

This is a function command; it returns one of the status codes shown below.

Notes: • To read and clear counters, use Get & Clear HDD Module Counter (one counter) or Get &
Clear HDD Module Counters (all counters on a module).

• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,
and see form #1547, the SNAP High-Density Digital Module User’s Guide.

• Counters with values of more than 2 billion may appear as negative numbers.

Status Codes: 0 = Success

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Module Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Start Table Index
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Result In
Integer 32 Table

Argument 5
Put Status In
Integer 32 Variable

Get HDD Module Counters
I/O Unit Installation_42 SNAP-ENET-S64

Module Number 10 Integer 32 Literal
Start Table Index 0 Integer 32 Literal

Put Result In Rotations Integer 32 Variable
Put Status in Status_Code Integer 32 Variable

 Index Counter Value
0 25678 Counter data for point 0
1 25678 Counter data for point 1
2 30946747 Counter data for point 2
3 42 Counter data for point 3
ioControl Command Reference G-57

-3 = Invalid table length. Table must contain at least 32 elements.
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get & Clear HDD Module Counter (page G-20), Get & Clear HDD Module Counters (page G-21)

Get HDD Module Off-Latches
High Density Digital Module Action

Function: To read the off-latches of all points on a high-density digital input module.

Typical Use: To read off-latches without clearing latches.

Details: • Works only on high-density digital modules, not on standard digital modules.
• Uses a bitmask to indicate the state of off-latches for all points on the module. The least

significant bit corresponds to point 0. A value of 1 in a bit means the off-latch is on (set); a
value of 0 in the bit means the off-latch is off (not set).

Arguments:

Standard
Example:

An example of the result is illustrated below. Only the first 8 and last 8 off-latches are shown.

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Module Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result In
Integer 32 Variable

Argument 4
Put Status In
Integer 32 Variable

Get HDD Module Off-Latches
I/O Unit Bldg_A SNAP-B3000-ENET,

SNAP-ENET-RTC
Module Number 9 Integer 32 Literal

Put Result In Fan_OffLatches Integer 32 Variable
Put Status in Status_Code Integer 32 Variable

Bitma
sk

Hex 9 3 B 2

Binary 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0
G-58 ioControl Command Reference

G

OptoScript
Example:

GetHddModuleOffLatches(I/O Unit, Module Number, Put Result In)
Status_Code = GetHddModuleOffLatches(Bldg_A, 9, Fan_OffLatches);

This is a function command; it returns one of the status codes shown below.

Notes: • To read all off-latches for all HDD modules on one I/O unit, use Get All HDD Module
Off-Latches.

• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,
and see form #1547, the SNAP High-Density Digital Module User’s Guide.

Status Codes: 0 = Success
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get HDD Module On-Latches (page G-60), Get All HDD Module Off-Latches (page G-32), Get &
Clear HDD Module Off-Latches (page G-22), Get & Clear All HDD Module Off-Latches (page G-10)

Off-latch o
n

o
f
f

o
f
f

o
n

o
f
f

o
f
f

o
n

o
n

o
n

o
f
f

o
n

o
n

o
f
f

o
f
f

o
n

o
f
f

Point Number 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

7 6 5 4 3 2 1 0
ioControl Command Reference G-59

Get HDD Module On-Latches
High Density Digital Module Action

Function: To read the on-latches of all points on a high-density digital input module.

Typical Use: To read on-latches without clearing latches.

Details: • Works only on high-density digital modules, not on standard digital modules.
• Uses a bitmask to indicate the state of on-latches for all points on the module. The least

significant bit corresponds to point 0. A value of 1 in a bit means the on-latch is on (set); a
value of 0 in the bit means the on-latch is off (not set).

Arguments:

Standard
Example:

An example of the result is illustrated below. Only the first 8 and last 8 on-latches are shown.

OptoScript
Example:

GetHddModuleOnLatches(I/O Unit, Module Number, Put Result In)
Status_Code = GetHddModuleOnLatches(Bldg_A, 9, Fan_OnLatches);

This is a function command; it returns one of the status codes shown below.

Notes: • To read all on-latches for all HDD modules on one I/O unit, use Get All HDD Module
On-Latches.

• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,
and see form #1547, the SNAP High-Density Digital Module User’s Guide.

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Module Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result In
Integer 32 Variable

Argument 4
Put Status In
Integer 32 Variable

Get HDD Module On-Latches
I/O Unit Bldg_A SNAP-B3000-ENET,

SNAP-ENET-RTC
Module Number 9 Integer 32 Literal

Put Result In Fan_OnLatches Integer 32 Variable
Put Status in Status_Code Integer 32 Variable

Bitma
sk

Hex 9 3 B 2

Binary 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0

On-latch o
n

o
f
f

o
f
f

o
n

o
f
f

o
f
f

o
n

o
n

o
n

o
f
f

o
n

o
n

o
f
f

o
f
f

o
n

o
f
f

Point Number 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

7 6 5 4 3 2 1 0
G-60 ioControl Command Reference

G

Status Codes: 0 = Success

-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get HDD Module Off-Latches (page G-58), Get All HDD Module On-Latches (page G-34), Get &
Clear HDD Module On-Latches (page G-24), Get & Clear All HDD Module On-Latches (page G-12)

Get HDD Module States
High Density Digital Module Action

Function: To read the states of all points on a high-density digital input or output module.

Typical Use: To get information about all points on one module in one command.

Details: • Works only on high-density digital modules, not on standard digital modules.
• Uses a bitmask to indicate the state of each point on the module. The least significant bit

corresponds to point 0. A value of 1 in a bit means the point is on; a value of 0 in the bit
means the point is off.

Arguments:

Standard
Example:

An example of the result is illustrated below. Only the first 8 and last 8 points are shown.

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Module Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result In
Integer 32 Variable

Argument 4
Put Status In
Integer 32 Variable

Get HDD Module States
I/O Unit UIO_A SNAP-UP1-ADS

Module Number 12 Integer 32 Literal
Put Result In Fan_Status Integer 32 Variable
Put Status in Status_Code Integer 32 Variable

Bitma
sk

Hex 9 3 B 2

Binary 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0

State o
n

o
f
f

o
f
f

o
n

o
f
f

o
f
f

o
n

o
n

o
n

o
f
f

o
n

o
n

o
f
f

o
f
f

o
n

o
f
f

Point Number 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

7 6 5 4 3 2 1 0
ioControl Command Reference G-61

OptoScript
Example:

GetHddModuleStates(I/O Unit, Module Number, Put Result In)
Status_Code = GetHddModuleStates(UIO_A, 12, Fan_Status);

This is a function command; it returns one of the status codes shown below.

Notes: • To read the points on all HDD modules on one I/O unit, use Get All HDD Module States.
• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,

and see form #1547, the SNAP High-Density Digital Module User’s Guide.

Status Codes: 0 = Success
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get All HDD Module States (page G-36), Set HDD Module from MOMO Masks (page S-23), Turn
On HDD Module Point (page T-28), Turn Off HDD Module Point (page T-26)

Get High Bits of Integer 64
Logical Action

Function: To read only the upper 32 bits of a 64-bit integer and place them in a 32-bit integer.

Typical Use: To convert half of a 64-bit integer into a 32-bit integer for faster manipulation. Often used when
only part of a 64-point digital rack is populated with points.

Details: • Returns the upper 32 bits, which represent the upper 32 points on a 64-point digital-only
rack, to the numeric variable specified.

• The least significant bit corresponds to point 32; the most significant bit corresponds to
point 63.

Arguments:

Standard
Example:

OptoScript
Example:

GetHighBitsOfInt64(High Bits From)
IN_BD2_HIGH = GetHighBitsOfInt64(INPUT_BOARD_2);

This is a function command; it returns the upper 32 bits of a 64-bit integer. The returned value
can be consumed by a variable (as shown) or by another item, such as a control structure. See
Chapter 11 of the ioControl User’s Guide for more information.

Argument 1
High Bits From
Integer 64 Variable

Argument 2
Put in
Integer 32 Variable

Get High Bits of Integer 64
High Bits From INPUT_BOARD_2 Integer 64 Variable

Put in IN_BD2_HIGH Integer 32 Variable
G-62 ioControl Command Reference

G

Notes: This command is useful if you want to get information from a digital-only SNAP-ENET-D64 or

SNAP-UP1-D64 brain, which use “integer 64” commands, into a program that doesn’t directly
support 64-bit integers. Such programs include ioDisplay and third-party products.

See Also: Get Low Bits of Integer 64 (page G-85), Make Integer 64 (page M-1)

Get Hours
Time/Date Action

Function: To read the hour (0 through 23) from the control engine’s real-time clock/calendar and put it into a
numeric variable.

Typical Use: To trigger an event in an ioControl program based on the hour of the day, or to log an event.

Details: • The destination variable can be an integer or a float, although an integer is preferred.
• Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00,

and 11:59:00 p.m. = 23:59:00.
• If the current time is 2:35 p.m. (14:35:00), this action would place the value 14 into the Put In

parameter (Argument 1).

Arguments:

Standard
Example:

OptoScript
Example:

GetHours()
HOURS = GetHours();

This is a function command; it returns the hour of the day (0 through 23) from the control engine’s
real-time clock. The returned value can be consumed by a variable (as shown) or by another item,
such as a mathematical expression or a control structure. See Chapter 11 of the ioControl User’s
Guide for more information.

Notes: • This is a one-time read of the hour. If the hour changes, you will need to execute this
command again to get the current hour.

• Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current hour.

See Also: Get Day (page G-49), Get Day of Week (page G-50), Get Minutes (page G-86), Get Month
(page G-97), Get Seconds (page G-135), Get Year (page G-145), Set Day (page S-17), Set Hours
(page S-25), Set Minutes (page S-43), Set Month (page S-57), Set Seconds (page S-78), Set Year
(page S-89)

Argument 1
Put in
Float Variable
Integer 32 Variable

Get Hours
Put In HOURS Integer 32 Variable
ioControl Command Reference G-63

Get ID of Block Causing Current Error
Error Handling Action

Function: Gets the ID number of the block that caused the top queue error.

Typical Use: In an error handling chart to build a history of errors in a string table.

Details: Only works when the top queue error is not an I/O unit error.

Arguments:

Standard
Example:

OptoScript
Example:

GetIdOfBlockCausingCurrentError()
Error_Block_ID = GetIdOfBlockCausingCurrentError();

This is a function command; it returns the ID number of the block that caused the top error in the
message queue. The returned value can be consumed by a variable (as shown) or by another
item, such as a mathematical expression or a control structure. See Chapter 11 of the ioControl
User’s Guide for more information.

Notes: Blocks are numbered starting with zero.

Dependencies: The top queue error must not be an I/O unit error.

See Also: Get Name of Chart Causing Current Error (page G-98), Get Name of I/O Unit Causing Current Error
(page G-99)

Argument 1
Put in
Integer 32 Variable

Get Id of Block Causing Current Error
Put in Error_Block_ID Integer 32 Variable
G-64 ioControl Command Reference

G

Get I/O Unit as Binary Value
I/O Unit Action

Function: To read the current on/off status of all digital points on the I/O unit.

Typical Use: To efficiently read the status of all digital points on a single I/O unit with one command.

Details: • Reads the current on/off status of all digital points on the I/O unit specified and updates the
IVALs and XVALs for all points. Reads outputs as well as inputs.

• Returns status (a 32-bit or 64-bit integer) to the numeric variable specified.
• If a point is on, there will be a “1” in the respective bit. If the point is off, there will be a “0”

in the respective bit. The least significant bit corresponds to point zero.
• An analog, serial, or PID point on a mixed I/O unit will appear as a “0”.
• If a specific point is disabled, it will not be read. If the entire I/O unit is disabled, none of the

points will be read.

Arguments:

Standard
Example:

The effect of this command is illustrated below:

To save space, the example shows only the first eight points and the last eight points on the
64-point I/O unit. Points with a value of 1 are on; points with a value of 0 are off.

Argument 1
From
B100*
B3000 (Digital)*
G4 Digital Local Simple I/O Unit*
G4D16R*
G4D32RS*
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2
SNAP-BRS*

* ioControl Professional only

Argument 2
Put in
Integer 32 Variable
Integer 64 Variable

Get I/O Unit as Binary Value
From INPUT_BOARD_2 SNAP-ENET-D64
Put in IN_BD2_STATUS Integer 64 Variable

Point Number 6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

7 6 5 4 3 2 1 0

Bit
mas

k

Binary 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0

Hex 6 C 4 2
ioControl Command Reference G-65

OptoScript
Example:

GetIoUnitAsBinaryValue(I/O Unit)
IN_BD2_STATUS = GetUnitAsBinaryValue(Input_Board_2);

This is a function command; it returns the current on/off status of all digital points, in the form
of a bitmask. The returned value can be consumed by a variable (as shown) or by another item,
such as a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: Use Bit Test to examine individual bits.

See Also: Set Digital-64 I/O Unit from MOMO Masks (page S-19), Set Mixed I/O Unit from MOMO Masks
(page S-55)
G-66 ioControl Command Reference

G

Get I/O Unit Event Message State
I/O Unit—Event Message Action

Function: To determine the current state of an event message on a SNAP Ultimate or Ethernet I/O unit.

Typical Use: To find out whether an e-mail, SNMP, or other kind of event message has been sent.

Details: Possible states are: 0 = Inactive, 1 = Active, or 2 = Acknowledged.

Arguments:

Standard
Example:

OptoScript
Example:

GetIoUnitEventMsgState(I/O Unit, Event Message #, Put Result in)
Status = GetIoUnitEventMsgState(UIO_A, 0, State);

This is a function command; it returns one of the status codes listed below.

Notes: • See “I/O Unit—Event Message Commands” in Chapter 10 of the ioControl User’s Guide.
• Use ioManager to configure the types, intervals, and text of event messages. You can

configure up to 128 messages for each I/O unit.
• To find out the text of the message, use Get I/O Unit Event Message Text.
• To send the message, use Set I/O Unit Event Message State.

Status Codes: 0 = success
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get I/O Unit Event Message Text (page G-68), Set I/O Unit Event Message State (page S-26), Set
I/O Unit Event Message Text (page S-27)

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Event Message Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
Integer 32 Variable

Argument 4
Put Status in
Integer 32 Variable

Get I/O Unit Event Message State
I/O Unit UIO_A SNAP-UP1-ADS

Event Message Number 0 Integer 32 Literal
Put Result in State Integer 32 Variable
Put Status in Status Integer 32 Variable
ioControl Command Reference G-67

Get I/O Unit Event Message Text
I/O Unit—Event Message Action

Function: To read the text of an event message on a SNAP Ultimate or Ethernet I/O unit.

Typical Use: To read the text of an e-mail, SNMP, or other kind of message sent as a response to an event that
occurs within strategy logic.

Details: The message text is returned in Argument 3. The string variable for Argument 3 should be 128
characters long to hold the message text.

Arguments:

Standard
Example:

OptoScript
Example:

GetIoUnitEventMsgText(I/O Unit, Event Message #, Put Result in)
Status = GetIoUnitEventMsgText(UIO_A, 0, Msg_0);

This is a function command; it returns one of the status codes listed below.

Notes: • See “I/O Unit—Event Message Commands” in Chapter 10 of the ioControl User’s Guide.
• Use ioManager to configure the types, intervals, and text of event messages. You can

configure up to 128 messages for each I/O unit.
• If the variable in Argument 3 is shorter than 128 characters, as many characters as fit are

placed in it and an error -23 is returned.

Status Codes: 0 = success
-12 = Invalid index. Event message number is less than 0 or greater than 127.
-23 = String too short. String variable in Argument 3 must be 128 characters long.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get I/O Unit Event Message State (page G-67), Set I/O Unit Event Message State (page S-26),
Set I/O Unit Event Message Text (page S-27)

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Event Message Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
String Variable

Argument 4
Put Status in
Integer 32 Variable

Get I/O Unit Event Message Text
I/O Unit UIO_A SNAP-UP1-ADS

Event Message Number 0 Integer 32 Literal
Put Result in Msg_0 String Variable
Put Status in Status Integer 32 Variable
G-68 ioControl Command Reference

G

Get I/O Unit Scratch Pad Bits
I/O Unit—Scratch Pad Action

Function: To read a bit in the Scratch Pad area of a SNAP Ultimate or Ethernet brain.

Typical Use: For peer-to-peer communication. Strategy data can be stored in the brain’s Scratch Pad area and
retrieved by a peer on the network.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• Use Set I/O Unit Scratch Pad Bits from MOMO Mask to store the data in the Scratch Pad
area, and then use this command to retrieve it.

• The entire Scratch Pad Bits area is returned to the variable named in Argument 2.

Arguments:

Standard
Example:

OptoScript
Example:

GetIoUnitScratchPadBits(I/O Unit, Put Result in)
Status = GetIoUnitScratchPadBits(UIO_B, MyInt64Var);

This is a function command; it returns one of the status codes listed below.

Notes: • To find out the value of a specific bit in the returned data, use Bit Test. See other logical
commands for other ways to work with the returned data.

• The I/O unit Scratch Pad area is for general-purpose use and is accessible to any network
device (for example, another Ultimate I/O unit or an application running on a PC) that can
connect to the I/O unit’s command processor port (usually port 2001). Be aware of all devices
that have access to the area, and make sure that their reads and writes are synchronized so
that correct data is available to all devices when needed.

• See “I/O Unit—Scratch Pad Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = success
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Put Result in
Integer 64 Variable

Argument 3
Put Status in
Integer 32 Variable

Get I/O Unit Scratch Pad Bits
I/O Unit UIO_B SNAP-UP1-ADS

Put Result in MyInt64Var Integer 64 Variable
Put Status in Status Integer 32 Variable
ioControl Command Reference G-69

-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Set I/O Unit Scratch Pad Bits from MOMO Mask (page S-31), Get I/O Unit Scratch Pad Float
Element (page G-70), Get I/O Unit Scratch Pad Float Table (page G-72), Get I/O Unit Scratch Pad
Integer 32 Element (page G-74), Get I/O Unit Scratch Pad Integer 32 Table (page G-76), Get I/O
Unit Scratch Pad String Element (page G-78), Get I/O Unit Scratch Pad String Table (page G-80)

Get I/O Unit Scratch Pad Float Element
I/O Unit—Scratch Pad Action

Function: To read a float in the Scratch Pad area of a remote or local SNAP Ultimate brain.

Typical Use: For peer-to-peer communication. Strategy variable data can be stored in the brain’s Scratch Pad
area and retrieved by a peer on the network.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• You can use Set I/O Unit Scratch Pad Float Element to store the variable data in the Scratch
Pad area, and then use this command to retrieve it.

• The float area of the Scratch Pad is a table containing 10240 elements (index numbers
0–10,239). Enter the index number of the element you want to read in Argument 2. The float
value is returned to the float variable named in Argument 3.

Arguments:

Standard
Example:

OptoScript
Example:

GetIoUnitScratchPadFloatElement(I/O Unit, Index, Put Result in)
Status = GetIoUnitScratchPadFloatElement(UIO_B, 26, MyFloatVar);

This is a function command; it returns one of the status codes listed below.

Notes: • To retrieve more than one float value in a single command, use Get I/O Unit Scratch Pad
Float Table.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
Float Variable

Argument 4
Put Status in
Integer 32 Variable

Get I/O Unit Scratch Pad Float Element
I/O Unit UIO_B SNAP-UP1-ADS

Index 26 Integer 32 Literal
Put Result in MyFloatVar Float Variable
Put Status in Status Integer 32 Variable
G-70 ioControl Command Reference

G

• The I/O unit Scratch Pad area is for general-purpose use and is accessible to any network

device (for example, another Ultimate I/O unit or an application running on a PC) that can
connect to the I/O unit’s command processor port (usually port 2001). Be aware of all devices
that have access to the area, and make sure that their reads and writes are synchronized so
that correct data is available to all devices when needed.

• Since this command accesses a table on an I/O unit, it requires communication to that unit,
so it will take more time than just moving data between tables in a strategy.

• See “I/O Unit—Scratch Pad Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = success
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Set I/O Unit Scratch Pad Float Element (page S-32), Get I/O Unit Scratch Pad Bits (page G-69),
Get I/O Unit Scratch Pad Float Table (page G-72), Get I/O Unit Scratch Pad Integer 32 Element
(page G-74), Get I/O Unit Scratch Pad Integer 32 Table (page G-76), Get I/O Unit Scratch Pad
String Element (page G-78), Get I/O Unit Scratch Pad String Table (page G-80)
ioControl Command Reference G-71

Get I/O Unit Scratch Pad Float Table
I/O Unit—Scratch Pad Action

Function: To read a series of float values in the Scratch Pad area of a local or remote SNAP Ultimate brain.

Typical Use: For peer-to-peer communication. Strategy variable data can be stored in the brain’s Scratch Pad
area and retrieved by a peer on the network.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• You can use Set I/O Unit Scratch Pad Float Element more than once, or use Set I/O Unit
Scratch Pad Float Table, to store the variable data in the Scratch Pad area. Use this
command to retrieve the float values and place them in a table defined in the peer’s strategy.

• The float area of the Scratch Pad is a table containing 10240 elements (index numbers
0–10239). Enter the number of elements you want to read in Argument 2 and the index
number of the starting element in Argument 3.

• The float values are returned to the float table named in Argument 5, starting at the index
shown in Argument 4.

• Argument 3, From Index, is the start index of the source table.
• Argument 4, To Index, is the start index of the destination table that data will be written to.

Arguments:

Standard
Example:

OptoScript
Example:

GetIoUnitScratchPadFloatTable(I/O Unit, Length, From Index, To Index, To
Table)
Status = GetIoUnitScratchPadFloatTable(UIO_B, 64, 0, 0, MyFloatTable);

This is a function command; it returns one of the status codes listed below.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Length
Integer 32 Literal
Integer 32 Variable

Argument 3
From Index
Integer 32 Literal
Integer 32 Variable

Argument 4
To Index
Integer 32 Literal
Integer 32 Variable

Argument 5
To Table
Float Table

Argument 6
Put Status in
Integer 32 Variable

Get I/O Unit Scratch Pad Float Table
I/O Unit UIO_B SNAP-UP1-ADS
Length 64 Integer 32 Literal

From Index 0 Integer 32 Literal
To Index 0 Integer 32 Literal
To Table MyFloatTable Float Table

Put Status in Status Integer 32 Variable
G-72 ioControl Command Reference

G

Notes: • To retrieve a single float value, use Get I/O Unit Scratch Pad Float Element.

• The I/O unit Scratch Pad area is for general-purpose use and is accessible to any network
device (for example, another Ultimate I/O unit or an application running on a PC) that can
connect to the I/O unit’s command processor port (usually port 2001). Be aware of all
devices that have access to the area, and make sure that their reads and writes are
synchronized so that correct data is available to all devices when needed.

• Since this command accesses a table on an I/O unit, it requires communication to that unit,
so it will take more time than just moving data between tables in a strategy.

• See “I/O Unit—Scratch Pad Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = success
-3 = Invalid length. Argument 2 (Length) less than 0 or greater than 10240.
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Set I/O Unit Scratch Pad Float Table (page S-34), Get I/O Unit Scratch Pad Float Element
(page G-70), Get I/O Unit Scratch Pad Bits (page G-69), Get I/O Unit Scratch Pad Integer 32
Element (page G-74), Get I/O Unit Scratch Pad Integer 32 Table (page G-76), Get I/O Unit Scratch
Pad String Element (page G-78), Get I/O Unit Scratch Pad String Table (page G-80)
ioControl Command Reference G-73

Get I/O Unit Scratch Pad Integer 32 Element
I/O Unit—Scratch Pad Action

Function: To read an integer 32 in the Scratch Pad area of a local or remote SNAP Ultimate brain.

Typical Use: For peer-to-peer communication. Strategy variable data can be stored in the brain’s Scratch Pad
area and retrieved by a peer on the network.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• You can use Set I/O Unit Scratch Pad Integer 32 Element to store the variable data in the
Scratch Pad area, and then use this command to retrieve it.

• The integer 32 area of the Scratch Pad is a table containing 10,240 elements (index numbers
0–10239). Enter the index number of the element you want to read in Argument 2. The
integer 32 value is returned to the integer 32 variable named in Argument 3.

• The integer 32 value is returned to the integer 32 variable named in Argument 3.

Arguments:

Standard
Example:

OptoScript
Example:

GetIoUnitScratchPadInt32Element(I/O Unit, Index, Put Result in)
Status = GetIoUnitScratchPadInt32Element(UIO_B, 26, MyInt32Var);

This is a function command; it returns one of the status codes listed below.

Notes: • To retrieve more than one integer 32 value in a single command, use Get I/O Unit Scratch
Pad Integer 32 Table.

• The I/O unit Scratch Pad area is for general-purpose use and is accessible to any network
device (for example, another Ultimate I/O unit or an application running on a PC) that can
connect to the I/O unit’s command processor port (usually port 2001). Be aware of all devices
that have access to the area, and make sure that their reads and writes are synchronized so
that correct data is available to all devices when needed.

• Since this command accesses a table on an I/O unit, it requires communication to that unit,
so it will take more time than just moving data between tables in a strategy.

• See “I/O Unit—Scratch Pad Commands” in Chapter 10 of the ioControl User’s Guide.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
Integer 32 Variable

Argument 4
Put Status in
Integer 32 Variable

Get I/O Unit Scratch Pad Integer 32 Element
I/O Unit UIO_B SNAP-UP1-ADS

Index 26 Integer 32 Literal
Put Result in MyInt32Var Integer 32 Variable
Put Status in Status Integer 32 Variable
G-74 ioControl Command Reference

G

Status Codes: 0 = success

-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Set I/O Unit Scratch Pad Integer 32 Element (page S-36), Get I/O Unit Scratch Pad Bits
(page G-69), Get I/O Unit Scratch Pad Float Element (page G-70), Get I/O Unit Scratch Pad Float
Table (page G-72), Get I/O Unit Scratch Pad Integer 32 Table (page G-76), Get I/O Unit Scratch
Pad String Element (page G-78), Get I/O Unit Scratch Pad String Table (page G-80)
ioControl Command Reference G-75

Get I/O Unit Scratch Pad Integer 32 Table
I/O Unit—Scratch Pad Action

Function: To read a series of integer 32 values in the Scratch Pad area of a local or remote SNAP Ultimate
brain.

Typical Use: For peer-to-peer communication. Strategy variable data can be stored in the brain’s Scratch Pad
area and retrieved by a peer on the network.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• You can use Set I/O Unit Scratch Pad Integer 32 Element more than once, or use Set I/O Unit
Scratch Pad Integer 32 Table, to store the variable data in the Scratch Pad area. Use this
command to retrieve the integer values in one step and place them in a table defined in the
peer’s strategy.

• The integer 32 area of the Scratch Pad is a table containing 10,240 elements (index numbers
0–10239). Enter the number of elements you want to read in Argument 2 and the index
number of the starting element in Argument 3.

• The integer values are returned to the integer 32 table named in Argument 5, starting at the
index shown in Argument 4.

Arguments:

Standard
Example:

OptoScript
Example:

GetIoUnitScratchPadInt32Table(I/O Unit, Length, From Index, To Index, To
Table)
Status = GetIoUnitScratchPadInt32Table(UIO_B,64, 0, 0, MyInt32Table);

This is a function command; it returns one of the status codes listed below.

Notes: • To retrieve a single integer 32 value, use Get I/O Unit Scratch Pad Integer 32 Element.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Length
Integer 32 Literal
Integer 32 Variable

Argument 3
From Index
Integer 32 Literal
Integer 32 Variable

Argument 4
To Index
Integer 32 Literal
Integer 32 Variable

Argument 5
To Table
Integer 32 Table

Argument 6
Put Status in
Integer 32 Variable

Get I/O Unit Scratch Pad Integer 32 Table
I/O Unit UIO_B SNAP-UP1-ADS
Length 64 Integer 32 Literal

From Index 0 Integer 32 Literal
To Index 0 Integer 32 Literal
To Table MyInt32Table Integer 32 Table

Put Status in Status Integer 32 Variable
G-76 ioControl Command Reference

G

• The I/O unit Scratch Pad area is for general-purpose use and is accessible to any network

device (for example, another Ultimate I/O unit or an application running on a PC) that can
connect to the I/O unit’s command processor port (usually port 2001). Be aware of all devices
that have access to the area, and make sure that their reads and writes are
synchronized so that correct data is available to all devices when needed.

• Since this command accesses a table on an I/O unit, it requires communication to that unit,
so it will take more time than just moving data between tables in a strategy.

• See “I/O Unit—Scratch Pad Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = success
-3 = Invalid length. Argument 2 (Length) less than 0 or greater than 3072.
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Set I/O Unit Scratch Pad Integer 32 Table (page S-38), Get I/O Unit Scratch Pad Float Element
(page G-70), Get I/O Unit Scratch Pad Float Table (page G-72), Get I/O Unit Scratch Pad Integer
32 Element (page G-74), Get I/O Unit Scratch Pad Bits (page G-69), Get I/O Unit Scratch Pad
String Element (page G-78), Get I/O Unit Scratch Pad String Table (page G-80)
ioControl Command Reference G-77

Get I/O Unit Scratch Pad String Element
I/O Unit—Scratch Pad Action

Function: To read a string in the Scratch Pad area of a local or remote SNAP Ultimate brain.

Typical Use: For peer-to-peer communication. Strategy variable data can be stored in the brain’s Scratch Pad
area and retrieved by a peer on the network.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• You can use Set I/O Unit Scratch Pad String Element to store the variable data in the Scratch
Pad area, and then use this command to retrieve it.

• The string area of the Scratch Pad is a table containing 64 elements (index numbers 0–63).
Each string element can hold 128 characters or 128 bytes of binary data. Enter the index
number of the element you want to read in Argument 2. The string is returned to the string
variable named in Argument 3.

Arguments:

Standard
Example:

OptoScript
Example:

GetIoUnitScratchPadStringElement(I/O Unit, Index, Put Result in)
Status = GetIoUnitScratchPadStringElement(UIO_B,26, MyStringVar);

This is a function command; it returns one of the status codes listed below.

Notes: • To retrieve more than one string in a single command, use Get I/O Unit Scratch Pad String
Table.

• If the destination string width is smaller than the received string, as many characters as
possible are placed in the string and a -23 error is returned.

• The I/O unit Scratch Pad area is for general-purpose use and is accessible to any network
device (for example, another Ultimate I/O unit or an application running on a PC) that can
connect to the I/O unit’s command processor port (usually port 2001). Be aware of all devices
that have access to the area, and make sure that their reads and writes are synchronized so
that correct data is available to all devices when needed.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
String Variable

Argument 4
Put Status in
Integer 32 Variable

Get I/O Unit Scratch Pad String Element
I/O Unit UIO_B SNAP-UP1-ADS

Index 26 Integer 32 Literal
Put Result in MyStringVar String Variable
Put Status in Status Integer 32 Variable
G-78 ioControl Command Reference

G

• Since this command accesses a table on an I/O unit, it requires communication to that unit,

so it will take more time than just moving data between tables in a strategy.
• See “I/O Unit—Scratch Pad Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = success
-12 = Invalid table index value—index was negative or greater than the table size.
-23 = String too short. Destination string width is smaller than received string. (As many
characters as possible are placed in the string.)
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Set I/O Unit Scratch Pad String Element (page S-40), Get I/O Unit Scratch Pad Float Element
(page G-70), Get I/O Unit Scratch Pad Float Table (page G-72), Get I/O Unit Scratch Pad Integer
32 Element (page G-74), Get I/O Unit Scratch Pad Integer 32 Table (page G-76), Get I/O Unit
Scratch Pad Bits (page G-69), Get I/O Unit Scratch Pad String Table (page G-80)
ioControl Command Reference G-79

Get I/O Unit Scratch Pad String Table
I/O Unit—Scratch Pad Action

Function: To read a series of strings in the Scratch Pad area of a local or remote SNAP Ultimate brain.

Typical Use: For peer-to-peer communication. Strategy variable data can be stored in the brain’s Scratch Pad
area and retrieved by a peer on the network.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• You can use Set I/O Unit Scratch Pad String Element or Set I/O Unit Scratch Pad String Table
to store the variable data in the Scratch Pad area, and then use this command to retrieve it.

• The string area of the Scratch Pad is a table containing 64 elements (index numbers 0–63).
Each string element can hold 128 characters or 128 bytes of binary data. Enter the number of
elements you want to read in Argument 2 and the index number of the starting element in
Argument 3.

• The string values are returned to the string table named in Argument 5, starting at the
index shown in Argument 4.

Arguments:

Standard
Example:

OptoScript
Example:

GetIoUnitScratchPadStringTable(I/O Unit, Length, From Index, To Index, To
Table)
Status = GetIoUnitScratchPadStringTable(UIO_B, 8, 0, 0, MyStringTable);

This is a function command; it returns one of the status codes listed below.

Notes: • To retrieve a single string, use Get I/O Unit Scratch Pad String Element.
• The I/O unit Scratch Pad area is for general-purpose use and is accessible to any network

device (for example, another Ultimate I/O unit or an application running on a PC) that can

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Length
Integer 32 Literal
Integer 32 Variable

Argument 3
From Index
Integer 32 Literal
Integer 32 Variable

Argument 4
To Index
Integer 32 Literal
Integer 32 Variable

Argument 5
To Table
String Table

Argument 6
Put Status in
Integer 32 Variable

Get I/O Unit Scratch Pad String Table
I/O Unit UIO_B SNAP-UP1-ADS
Length 8 Integer 32 Literal

From Index 0 Integer 32 Literal
To Index 0 Integer 32 Literal
To Table MyStringTable String Table

Put Status in Status Integer 32 Variable
G-80 ioControl Command Reference

G

connect to the I/O unit’s command processor port (usually port 2001). Be aware of all devices
that have access to the area, and make sure that their reads and writes are synchronized so
that correct data is available to all devices when needed.

• Since this command accesses a table on an I/O unit, it requires communication to that unit,
so it will take more time than just moving data between tables in a strategy.

• See “I/O Unit—Scratch Pad Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = success
-12 = Invalid table index value—index was negative or greater than the table size.
-23 = String too short. Destination string width is smaller than received string. (As many
characters as possible are placed in the string.)
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Set I/O Unit Scratch Pad String Table (page S-41), Get I/O Unit Scratch Pad Float Element
(page G-70), Get I/O Unit Scratch Pad Float Table (page G-72), Get I/O Unit Scratch Pad Integer
32 Element (page G-74), Get I/O Unit Scratch Pad Integer 32 Table (page G-76), Get I/O Unit
Scratch Pad String Element (page G-78), Get I/O Unit Scratch Pad Bits (page G-69)
ioControl Command Reference G-81

Get Julian Day
Time/Date Action

Function: Gets the number of days starting with January 1 up to and including today’s date.

Typical Use: Wherever Julian dates are required.

Details: Value returned will be from 1 to 366. For example, January 1 will always be Julian day 1.
December 31 will be Julian day 365 (or 366 in a leap year).

Arguments:

Standard
Example:

OptoScript
Example:

GetJulianDay()
Todays_Julian_Day = GetJulianDay();

This is a function command; it returns the number of the current day, computed since the
beginning of the year. The returned value can be consumed by a variable (as shown) or by another
item, such as a mathematical expression or a control structure. See Chapter 11 of the ioControl
User’s Guide for more information.

See Also: Copy Date to String (MM/DD/YYYY) (page C-60)

Argument 1
Put in
Integer 32 Variable

Get Julian Day
Put in Todays_Julian_Day Integer 32 Variable
G-82 ioControl Command Reference

G

Get Length of Table
Miscellanous Action

Function: To obtain the declared length (size) of a float, integer, string, or pointer table.

Typical Use: To determine the last index when reading or writing to a table.

Details: A size of 10, for example, means there are 10 elements numbered 0–9.

Arguments:

Standard
Example:

OptoScript
Example:

GetLengthOfTable(Table)
Config_Data_Size = GetLengthOfTable(Config_Data);

This is a function command; it returns the length of the table. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: Always use to determine table size when program logic must act on all elements of a table. Then
if the size of the table is later changed, the program will automatically adjust to the new size.

Argument 1
Table
Float Table
Integer 32 Table
Integer 64 Table
Pointer Table
String Table

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Length of Table
Table Config_Data Integer 32 Table
Put in Config_Data_Size Integer 32 Variable
ioControl Command Reference G-83

Get Line Causing Current Error
Error Handling Action

Function: Gets the line within a flowchart block that caused the top queue error.

Typical Use: In an error-handling chart to build a history of errors.

Details: • Works only when the top queue error is not an I/O unit error.
• The strategy must have been loaded to the control engine in full debug mode for this

command to work. If the strategy is in minimal debug mode, the command returns a zero.

Arguments:

Standard
Example:

OptoScript
Example:

GetLineCausingCurrentError()
Error_Block_ID = GetLineCausingCurrentError();

This is a function command; it returns the line that caused the top error in the message queue.
The returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide for
more information.

Dependencies: The top queue error must not be an I/O unit error.

See Also: Get ID of Block Causing Current Error (page G-64), Get Name of Chart Causing Current Error
(page G-98), Get Name of I/O Unit Causing Current Error (page G-99)

Argument 1
Put in
Integer 32 Variable

Get Line Causing Current Error
Put in Error_Block_ID Integer 32 Variable
G-84 ioControl Command Reference

G

Get Low Bits of Integer 64
Logical Action

Function: To read only the lower 32 bits of a 64-bit integer and place them in a 32-bit integer.

Typical Use: To convert half of a 64-bit integer into a 32-bit integer for faster manipulation. Often used when
only part of a 64-point digital rack is populated with points.

Details: • Returns the lower 32 bits, which represent the lower 32 points on a 64-point digital-only
rack, to the numeric variable specified.

• The least significant bit corresponds to point zero; the most significant bit corresponds to
point 32.

Arguments:

Standard
Example:

OptoScript
Example:

GetLowBitsOfInt64(Integer 64)
IN_BD2_LOW = GetLowBitsOfInt64(INPUT_BOARD_2);

This is a function command; it returns the lower 32 bits of a 64-bit integer. The returned value
can be consumed by a variable (as shown) or by another item, such as a control structure. See
Chapter 11 of the ioControl User’s Guide for more information.

Notes: This command is useful if you want to get information from a digital-only SNAP-ENET-D64 or
SNAP-UP1-D64 brain, which use “integer 64” commands, into a program that doesn’t directly
support 64-bit integers. Such programs include ioDisplay and third-party products.

See Also: Get High Bits of Integer 64 (page G-62), Make Integer 64 (page M-1)

Argument 1
Low Bits From
Integer 64 Variable

Argument 2
Put in
Integer 32 Variable

Get Low Bits of Integer 64
Low Bits From INPUT_BOARD_2 Integer 64 Variable

Put in IN_BD2_LOW Integer 32 Variable
ioControl Command Reference G-85

Get Minutes
Time/Date Action

Function: To read the minute (0 through 59) from the control engine’s real-time clock/calendar and put it
into a numeric variable.

Typical Use: To trigger an event in an ioControl program based on minutes past the hour, or to log an event.

Details: • The destination variable can be an integer or a float, although an integer is preferred.
• Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00,

and 11:59:00 p.m. = 23:59:00.
• If the current time is 2:35 p.m. (14:35:00), this action would place the value 35 into the Put In

parameter (Argument 1).

Arguments:

Standard
Example:

OptoScript
Example:

GetMinutes()
MINUTES = GetMinutes();

This is a function command; it returns the current minute (0 through 59) from the control engine’s
real-time clock. The returned value can be consumed by a variable (as shown) or by another item,
such as a mathematical expression or a control structure. See Chapter 11 of the ioControl User’s
Guide for more information.

Notes: • This is a one-time read of the minutes. If the minute changes, you will need to execute this
command again to get the current minute value.

• Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current minute value.

See Also: Get Day (page G-49), Get Day of Week (page G-50), Get Hours (page G-63), Get Month
(page G-97), Get Seconds (page G-135), Get Year (page G-145), Set Day (page S-17), Set Hours
(page S-25), Set Minutes (page S-43), Set Month (page S-57), Set Seconds (page S-78), Set Year
(page S-89)

Argument 1
Put in
Float Variable
Integer 32 Variable

Get Minutes
Put In MINUTES Integer 32 Variable
G-86 ioControl Command Reference

G

Get Mistic PID Control Word
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Function: Reads the bits that represent the PID configuration.

Typical Use: To verify the PID configuration when troubleshooting.

Details: Bit assignments:

Arguments:

Standard
Example:

OptoScript
Example:

GetMisticPidControlWord(From PID Loop)
PID_CTRL_WORD = GetMisticPidControlWord(Extruder_Zone08);

This is a function command; it returns the bits that represent the PID configuration. The returned
value can be consumed by a variable (as in the example shown) or by a control structure, etc. See
Chapter 11 of the ioControl User’s Guide for more information.

Notes: The PID Control Word is actually a 16-bit number. The four most significant bits are reserved.

See Also: Set Mistic PID Control Word (page S-44)

11 1 = Use SqRt value from input channel. 0 = Use actual input
value.

10 1 = Setpoint was above high clamp. Write zero to clear.
9 1 = Setpoint was below low clamp. Write zero to clear.
8 1 = Input channel under-range. Write zero to clear.
7 1 = Loop active. 0 = Loop reset (stopped).
6 1 = Loop in auto mode. 0 = Loop in manual mode.
5 1 = Output enabled. 0 = Output disabled (disconnected).
4 1 = Output tracks input in manual mode. 0 = no action.
3 1 = Setpoint tracks input in manual mode. 0 = no action.
2 1 = Input from host. 0 = Input from channel.
1 1 = Setpoint from channel. 0 = Setpoint from host.
0 1 = Use filtered value from input channel. Must have filtering

active on the input channel.
0 = Use current value of input channel.

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Integer 32 Variable

Get Mistic PID Control Word
From PID Loop Extruder_Zone08 PID Loop

Put in PID_CTRL_WORD Integer 32 Variable
ioControl Command Reference G-87

Get Mistic PID D Term
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Function: Reads the derivative value from the PID.

Typical Use: To store “as found” PID parameters for later use.

Details: • Reads the derivative value from the PID in the I/O unit. If the PID is disabled or the I/O unit is
disabled, the last known value will be returned instead (the IVAL).

Arguments:

Standard
Example:

OptoScript
Example:

GetMisticPidDTerm(From PID Loop)
Zone08_DTerm = GetMisticPidDTerm(Extruder_Zone08);

This is a function command; it returns the derivative value from the PID loop. The returned value
can be consumed by a variable (as in the example shown) or by a mathematical expression, a
control structure, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: Always use a float variable to store the result.

See Also: Set Mistic PID D Term (page S-45)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Mistic PID D Term
From PID Loop Extruder_Zone08 PID Loop

Put in Zone08_DTerm Float Variable
G-88 ioControl Command Reference

G

Get Mistic PID I Term
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Function: Reads the Integral value from the PID.

Typical Use: To store “as found” PID parameters for later use.

Details: • Reads the Integral value from the PID in the I/O unit. If the PID is disabled or the I/O unit is
disabled, the last known value will be returned instead (the IVAL).

Arguments:

Standard
Example:

OptoScript
Example:

GetMisticPidITerm(From PID Loop)
Zone08_ITerm = GetMisticPidITerm(Extruder_Zone08);

This is a function command; it returns the integral value from the PID loop. The returned value
can be consumed by a variable (as in the example shown) or by a mathematical expression, a
control structure, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: Always use a float variable to store the result.

See Also: Set Mistic PID I Term (page S-46)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Mistic PID I Term
From PID Loop Extruder_Zone08 PID Loop

Put in Zone08_ITerm Float Variable
ioControl Command Reference G-89

Get Mistic PID Input
PID—Mistic Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the input value (also known as the process variable) of the PID.

Typical Use: To find out the PID input value at the time of the most recent scan.

Details: • The value read has the same engineering units as the specified PID input channel.
• This command retrieves the input value from the most recent scan. To find out the value

right now, independent of scan time, use Get PID Current Input.
• The input can be an analog channel or a PID output (for cascaded PIDs), or it can be

determined by the strategy in the control engine using Set PID Input.

Arguments:

Standard
Example:

OptoScript
Example:

GetMisticPidInput(PID Loop)
PID_INPUT_VALUE = GetMisticPidInput(HEATER_3);

This is a function command; it returns the input value of the PID loop. The returned value can be
consumed by a variable (as in the example shown) or by an analog point, a mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Use to detect bad or out-of-range PID input values. When such a value is found, use the Set

PID Output command to change the PID output as required.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to Mistic PID Loop (page E-5), Set Mistic PID Input (page S-47)

Argument 1
PID Loop
PID Loop

Argument 2
Input
Analog Output
Float Variable
Integer 32 Variable

Get Mistic PID Input
 PID Loop HEATER_3 PID Loop

Input PID_INPUT_VALUE Float Variable
G-90 ioControl Command Reference

G

Get Mistic PID Mode
PID—Mistic Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read whether the PID is in auto or manual mode.

Typical Use: To store current PID parameters for later use.

Details: • Reads auto/manual mode from the PID in the I/O unit. If the PID is disabled or the I/O unit is
disabled, the last known value will be returned instead (the IVAL).

• Checks bit 6 of the PID control word. Returns a 1 (logical True) if in auto, otherwise a zero
(logical False) is returned.

• Returns a zero if in auto mode or a 1 if in manual mode.

Arguments:

Standard
Example:

OptoScript
Example:

GetMisticPidMode(PID Loop)
ZONE08_MODE = GetMisticPidMode(Extruder_Zone08);

This is a function command; it returns a zero (auto mode) or a 1 (manual mode). The returned
value can be consumed by a variable (as in the example shown) or by a mathematical expression,
a control structure, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Argument 1
PID Loop
PID Loop

Argument 2
Mode
Integer 32 Variable

Get Mistic PID Mode
 PID Loop Extruder_Zone08 PID Loop

Mode ZONE08_MODE Integer 32 Variable
ioControl Command Reference G-91

Get Mistic PID Output
PID—Mistic Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the output value of the PID.

Typical Use: To read the current PID output and store it for future use.

Details: The value read has the same engineering units as the specified PID output channel.

Arguments:

Standard
Example:

OptoScript
Example:

GetMisticPidOutput(PID Loop)
TPO_OUTPUT = GetMisticPidOutput(HEATER_3);

This is a function command; it returns the output value of the PID loop. The returned value can
be consumed by an analog output (as in the example shown) or by a variable, a mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• This command can also be used to detect when the PID output is updated (which is always

at the end of the scan period).

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to Mistic PID Loop (page E-5)

Argument 1
PID Loop
PID Loop

Argument 2
Output
Analog Output
Float Variable
Integer 32 Variable

Get Mistic PID Output
 PID Loop HEATER_3 PID Loop

Output TPO_OUTPUT Analog Output
G-92 ioControl Command Reference

G

Get Mistic PID Output Rate of Change
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Function: To read the output rate-of-change limit of the PID.

Typical Use: To verify that the output rate-of-change limit is as expected.

Details: • The output rate-of-change value defines how much the PID output can change per scan
period. The units are the same as those defined for the PID output channel.

• The default value is the span of the output channel. This allows the PID output to move as
much as 100 percent per scan period. For example, if the PID output channel is 4–20 mA,
16.00 would be returned by default, representing 100 percent of the span.

Arguments:

Standard
Example:

OptoScript
Example:

GetMisticPidOutputRateOfChange(From PID Loop)
PID_RATE_LIMIT = GetMisticPidOutputRateOfChange(HEATER_3);

This is a function command; it returns the output rate-of-change limit of the PID loop. The
returned value can be consumed by a variable (as in the example shown) or by a mathematical
expression, a control structure, etc. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Many additional PID loop control features are available. See the Mistic Analog and Digital

Commands Manual (Opto 22 form 270) or consult Opto 22 Product Support.

Dependencies: • Communication to the PID must be enabled for this command to read the actual value from
the PID.

• Requires an analog multifunction I/O unit.

See Also: Enable Communication to Mistic PID Loop (page E-5), Set Mistic PID Output Rate of Change
(page S-50), Set Mistic PID Scan Rate (page S-52)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Mistic PID Output Rate of Change
From PID Loop HEATER_3 PID Loop

Put in PID_RATE_LIMIT Float Variable
ioControl Command Reference G-93

Get Mistic PID P Term
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Function: Reads the gain value from the PID.

Typical Use: To store “as found” PID parameters for later use.

Details: Reads the gain value from the PID in the I/O unit. If the PID is disabled or the I/O unit is disabled,
the last known value will be returned instead (the IVAL).

Arguments:

Standard
Example:

OptoScript
Example:

GetMisticPidPTerm(From PID Loop)
Zone08_PTerm = GetMisticPidPTerm(Extruder_Zone08);

This is a function command; it returns the gain value from the PID. The returned value can be
consumed by a variable (as in the example shown) or by a mathematical expression, a control
structure, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: Always use a float variable to store the result.

See Also: Set Mistic PID P Term (page S-51)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Mistic PID P Term
From PID Loop Extruder_Zone08 PID Loop

Put in Zone08_PTerm Float Variable
G-94 ioControl Command Reference

G

Get Mistic PID Scan Rate
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O or the SNAP-PID-V module.

Function: Gets the PID calculation interval.

Typical Use: To store “as found” PID parameters for later use.

Details: Reads the Scan Rate value from the PID in the I/O unit. If the PID is disabled or the I/O unit is
disabled, the last known value will be returned instead (the IVAL).

Arguments:

Standard
Example:

OptoScript
Example:

GetMisticPidScanRate(From PID Loop)
Zone08_Scan_Rate = GetMisticPidScanRate(Extruder_Zone08);

This is a function command; it returns the PID calculation interval (scan rate) for the PID loop. The
returned value can be consumed by a variable (as in the example shown) or by a mathematical
expression, a control structure, etc. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: Always use a float variable to store the result.

See Also: Set Mistic PID Scan Rate (page S-52)

Argument 1
From PID Loop
PID Loop

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Mistic PID Scan Rate
From PID Loop Extruder_Zone08 PID Loop

Put in Zone08_Scan_Rate Float Variable
ioControl Command Reference G-95

Get Mistic PID Setpoint
PID—Mistic Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the setpoint value of the PID.

Typical Use: To verify that the setpoint of the PID is as expected and to store the setpoint for later use.

Details: • The value read has the same engineering units as the specified PID setpoint.
• This command retrieves the setpoint value from the most recent scan. To find out the value

right now, independent of scan time, use Get PID Current Setpoint.
• The setpoint can be an analog channel or a PID output (for cascaded PIDs), or it can be

determined by the strategy in the control engine using Set PID Setpoint.

Arguments:

Standard
Example:

OptoScript
Example:

GetMisticPidSetpoint(PID Loop)
PID_Setpoint_Value = GetMisticPidSetpoint(Heater_3);

This is a function command; it returns the setpoint value of the PID loop. The returned value can
be consumed by a variable (as in the example shown) or by an analog point, a mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Can be used to detect and log changes made to the PID setpoint.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to Mistic PID Loop (page E-5), Get PID Current Setpoint (page G-114), Set
Mistic PID Setpoint (page S-53)

Argument 1
PID Loop
PID Loop

Argument 2
Setpoint
Analog Output
Float Variable
Integer 32 Variable

Get Mistic PID Setpoint
 PID Loop Heater_3 PID Loop
Setpoint Pid_Setpoint_Value Float Variable
G-96 ioControl Command Reference

G

Get Month
Time/Date Action

Function: To read the month value (1 through 12) from the control engine’s real-time clock/calendar and put
it into a numeric variable.

Typical Use: To determine when to begin and end Daylight Savings Time.

Details: • The destination variable can be an integer or a float, although an integer is preferred.
• If the current date is March 2, 2002, this action would place the value 3 into the Put In

parameter (Argument 1).

Arguments:

Standard
Example:

OptoScript
Example:

GetMonth()
MONTH = GetMonth();

This is a function command; it returns a value representing the current month (1 through 12).
The returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide for
more information.

Notes: • This is a one-time read of the month. If the month changes, you will need to execute this
command again to get the value of the current month.

• Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current month value.

See Also: Get Day (page G-49), Get Day of Week (page G-50), Get Hours (page G-63), Get Minutes
(page G-86), Get Seconds (page G-135), Get Year (page G-145), Set Day (page S-17), Set Hours
(page S-25), Set Minutes (page S-43), Set Month (page S-57), Set Seconds (page S-78), Set Year
(page S-89)

Argument 1
Put in
Float Variable
Integer 32 Variable

Get Month
Put In MONTH Integer 32 Variable
ioControl Command Reference G-97

Get Name of Chart Causing Current Error
Error Handling Action

Function: Gets the name of the chart that caused the top queue error.

Typical Use: In an error handling chart to build a history of errors.

Details: Only works when the top queue error is not an I/O unit error.

Arguments:

Standard
Example:

OptoScript
Example:

GetNameOfChartCausingCurrentError(Put in)
(GetNameOfChartCausingCurrentError(CHART_NAME);

This is a procedure command; it does not return a value.

Notes: String length for name should be at least 50.

Dependencies: The top queue error must not be an I/O unit error.

See Also: Get ID of Block Causing Current Error (page G-64) Get Line Causing Current Error (page G-84), Get
Name of I/O Unit Causing Current Error (page G-99)

Argument 1
Put in
String Variable

Get Name of Chart Causing Current Error
Put in CHART_NAME String Variable
G-98 ioControl Command Reference

G

Get Name of I/O Unit Causing Current Error
Error Handling Action

Function: Gets the name of the I/O unit that caused the top queue error.

Typical Use: In an error handling chart to build a history of errors.

Details: Only works when the top queue error is an I/O unit error.

Arguments:

Standard
Example:

OptoScript
Example:

GetNameOfIoUnitCausingCurrentError(Put in)
GetNameOfIoUnitCausingCurrentError(IO_UNIT_NAME);

This is a procedure command; it does not return a value.

Notes: String length for name should be at least 50.

Dependencies: The top queue error must be an I/O unit error.

See Also: Get Name of Chart Causing Current Error (page G-98), Get ID of Block Causing Current Error
(page G-64) Get Line Causing Current Error (page G-84)

Argument 1
Put in
String Variable

Get Name of I/O Unit Causing Current Error
Put in IO_UNIT_NAME String Variable
ioControl Command Reference G-99

Get Nth Character
String Action

Function: To get the decimal ASCII value for a character in a string.

Typical Use: To examine characters in a string one by one, especially when the characters may not be
printable ASCII.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• Valid range for the Index parameter (Argument 2) is 0 to the string length.
• A negative result (-12) indicates an error in the value of the Index parameter used.

Arguments:

Standard
Example:

The following example gets the decimal ASCII value for a character in the string “ABC.” If the
Index is 0, the returned value will be 65 (the decimal ASCII value for “A”). Quotes are shown in
the example for clarity only; do not use quotes in standard commands.

OptoScript
Example:

GetNthCharacter(From String, Index)
ASCII_VALUE = GetNthCharacter("ABC”, INDEX);

This is a function command; it returns the ASCII value for a character within a string. Quotes are
required in OptoScript code. The returned value can be consumed by a variable (as shown) or by
another item, such as a control structure. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• Use to search a string for a particular character, such as a carriage return (character 13).
• To avoid searching past the end of the string, use Get String Length to determine the end of

the string.

Status Codes: -12 = Invalid index.

See Also: Get Substring (page G-139), Append Character to String (page A-9), Get String Length
(page G-138)

Argument 1
From String
String Literal
String Variable

Argument 2
Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Put Result in
Float Variable
Integer 32 Variable

Get Nth Character
From String “ABC” String Literal

Index INDEX Integer 32 Variable
Put Result in ASCII_VALUE Integer 32 Variable
G-100 ioControl Command Reference

G

Get Number of Characters Waiting
Communication Action

Function: To get the number of characters available to be received from a communication handle and put
it into a numeric variable.

Typical Use: To determine if there are any characters or a particular number of characters to be received
before actually receiving them, or to determine the size of a file that’s just been opened.

Details: • A value of 0 means there are no characters to be received. A negative value indicates an
error.

• Each character counts as one regardless of what it is.
• For Ethernet, the maximum number of characters that can be buffered is 8760, and any value

greater than zero indicates the actual number of characters waiting in the receive buffer.
• When using the file communication handle, this command returns the size of the file (if just

opened) or the number of characters after the current position (if some characters have
already been read or received, or the position has been moved).

• This command cannot be used with an FTP communication handle.

Arguments:

Standard
Example:

OptoScript
Example:

GetNumCharsWaiting(Communication Handle)
CHAR_COUNT = GenNumCharsWaiting(UIO_A);

This is a function command; it returns the number of characters available to be received. The
returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide for
more information.

Notes: • Use to determine if the number of characters expected equals the number of characters
actually ready to be received.

• If result > 0, there are characters available to be received.
• If result = 0, there are no characters to be received.
• If result < 0, there was an error executing this command. For example, the communication

handle may not be opened (use Open Outgoing Communication).

Queue Errors: -36 = Invalid command or feature not implemented. A firmware upgrade may be required to use
this feature on this type of communication handle.
-37 = Lock port timeout.

Argument 1
Communication Handle
Communication Handle

Argument 2
Put In
Float Variable
Integer 32 Variable

Get Number of Characters Waiting
Communication Handle UIO_A Communication Handle

Put in CHAR_COUNT Integer 32 Variable
ioControl Command Reference G-101

-39 = Receive timeout.
-52 = Invalid connection—not opened.
-53 = Connection number not valid.

See Also: Send Communication Handle Command (page S-2), especially the getpos and setpos commands

Get Off-Latch
Digital Point Action

Function: To read the state of an off-latch.

Typical Use: To ensure detection of an extremely brief on-to-off transition of a digital input.

Details: • Standard digital only. For high-density digital, see Get HDD Module Off-Latches.
• Reads an off-latch of a single digital input. Off-latches detect on-to-off input transitions that

would otherwise occur too fast for the control engine to detect, since they are processed
locally by the I/O unit.

• Places the value read into the argument specified by the Put In parameter. The argument will
contain a non-zero value (True) if the latch is set and 0 (False) if the latch is not set.

Arguments:

Standard
Example:

OptoScript
Example:

GetOffLatch(On Point)
if (GetOffLatch(START_BUTTON)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: The ability to detect fast input transitions is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: Applies only to standard digital inputs.

See Also: Get & Clear Off-Latch (page G-25), Clear Off-Latch (page C-26), Clear All Latches (page C-20),
Off-Latch Set? (page O-2)

Argument 1
From Point
Digital Input

Argument 2
Put in
Digital Output
Float Variable
Integer 32 Variable

Get Off-Latch
From Point START_BUTTON Digital Input

Put in RELEASED Float Variable
G-102 ioControl Command Reference

G

Get Off-Pulse Measurement
Digital Point Action

Function: To read the off-time duration of a digital input that has had an on-off-on transition.

Typical Use: To shut down or process interlocking where a momentary pulse of a certain length is required.

Details: • Gets the duration of the first complete off-pulse applied to the digital input.
• Measurement starts on the first on-to-off transition and stops on the first off-to-on

transition.
• Returns a float value representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.

Arguments:

Standard
Example:

OptoScript
Example:

GetOffPulseMeasurement(From Point)
OFF_TIME = GetOffPulseMeasurement(Overheat_Switch);

This is a function command; it returns the duration of the first off-pulse for the digital input. The
returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide for
more information.

Notes: • Use Get Off-Pulse Measurement Complete Status first to see if a complete off-pulse
measurement has occurred.

• The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: • Applies only to inputs configured with the off-pulse measurement feature.
• Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO

and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

See Also: Get & Restart Off-Pulse Measurement (page G-27), Get Off-Pulse Measurement Complete Status
(page G-104)

Argument 1
From Point
Off Pulse

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Off-Pulse Measurement
From Point Overheat_Switch Off Pulse

Put in OFF_TIME Float Variable
ioControl Command Reference G-103

Get Off-Pulse Measurement Complete Status
Digital Point Action

Function: To read the completion status of an off-pulse measurement.

Typical Use: To determine that a complete measurement has occurred before reading the measurement.

Details: • Gets the completion status of an off-pulse measurement and stores it in the Put In
parameter. The argument will contain a non-zero value (True) if the measurement is
complete or a 0 (False) if it is incomplete.

Arguments:

Standard
Example:

OptoScript
Example:

GetOffPulseMeasurementCompleteStatus(From Point)
Pulse_Complete = GetOffPulseMeasurementCompleteStatus(Overheat_Switch);

This is a function command; it returns a value of true (-1) or false (0), indicating whether a
complete measurement has occurred. The returned value can be consumed by a variable (as in
the example shown) or by a control structure, etc. See Chapter 11 of the ioControl User’s Guide
for more information.

Notes: • Use this command to see if a complete off-pulse measurement has occurred. The command
will not interfere with a current off-pulse measurement.

• Once the completion status is True, use Get Off-Pulse Measurement or Get & Restart
Off-Pulse Measurement to read the value.

Dependencies: • Applies only to inputs configured with the off-pulse measurement feature.
• Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO

and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

See Also: Get Off-Pulse Measurement (page G-103), Get & Restart Off-Pulse Measurement (page G-27)

Argument 1
From Point
Off Pulse

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Off-Pulse Measurement Complete Status
From Point Overheat_Switch Off Pulse

Put in Pulse_Complete Integer 32 Variable
G-104 ioControl Command Reference

G

Get Off-Time Totalizer
Digital Point Action

NOTE: This command is for mistic I/O units only.

Function: To read digital input total off time.

Typical Use: To accumulate the total off time of a device to possibly indicate downtime.

Details: • Reads the accumulated off time of a digital input since it was last reset.
• Returns a float representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.
• Does not reset the total.

Arguments:

Standard
Example:

OptoScript
Example:

GetOffTimeTotalizer(From Point)
Heater_Down_Time = GetOffTimeTotalizer(Heater_Output);

This is a function command; it returns the total time the digital input was off. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • To ensure the totalizer is cleared at start-up, use Get & Restart Off-Time Totalizer once
before using this command for the first time.

• The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: • Applies only to inputs configured with the totalize-off feature.
• Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO

and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

See Also: Get & Restart Off-Time Totalizer (page G-28)

Argument 1
From Point
Off Totalizer

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Off-Time Totalizer
From Point Heater_Output Off Totalizer

Put in Heater_Down_Time Float Variable
ioControl Command Reference G-105

Get On-Latch
Digital Point Action

Function: To read the state of an on-latch.

Typical Use: To ensure detection of an extremely brief off-to-on transition of a digital input.

Details: • Standard digital only. For high-density digital, see Get HDD Module On-Latches.
• Reads an on-latch of a single digital input. On-latches detect off-to-on input transitions that

would otherwise occur too fast for the control engine to detect, since they are processed
locally by the I/O unit.

• Places the value read into the argument specified by the Put In parameter. The argument will
contain a non-zero value (True) if the latch is set and 0 (False) if the latch is not set.

Arguments:

Standard
Example:

OptoScript
Example:

GetOnLatch(On Point)
if (GetOnLatch(ESTOP_BUTTON)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: The ability to detect fast input transitions is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: Applies only to standard digital inputs.

See Also: Get & Clear On-Latch (page G-26), Clear On-Latch (page C-27), Clear All Latches (page C-20),
On-Latch Set? (page O-4)

Argument 1
From Point
Digital Input

Argument 2
Put in
Digital Output
Float Variable
Integer 32 Variable

Get On-Latch
From Point ESTOP_BUTTON Smart Digital Input

Put in EMERGENCY_STOP Float Variable
G-106 ioControl Command Reference

G

Get On-Pulse Measurement
Digital Point Action

Function: To read the on-time duration of a digital input that has had an off-on-off transition.

Typical Use: To shut down or process interlocking where a momentary pulse of a certain length is required.

Details: • Gets the duration of the first complete on-pulse applied to the digital input.
• Measurement starts on the first off-to-on transition and stops on the first on-to-off

transition.
• Returns a float representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.

Arguments:

Standard
Example:

OptoScript
Example:

GetOnPulseMeasurement(From Point)
On_Time = GetOnPulseMeasurement(Overspeed_Switch);

This is a function command; it returns the duration of the first on-pulse for the digital input.
The returned value can be consumed by a variable (as shown) or by another item, such as a
mathematical expression or a control structure. See Chapter 11 of the ioControl User’s Guide for
more information.

Notes: • Use Get On-Pulse Measurement Complete Status first to see if a complete on-pulse
measurement has occurred.

• The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: • Applies only to inputs configured with the on-pulse measurement feature.
• Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO

and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

See Also: Get & Restart On-Pulse Measurement (page G-29), Get On-Pulse Measurement Complete Status
(page G-108)

Argument 1
From Point
On Pulse

Argument 2
Put in
Float Variable
Integer 32 Variable

Get On-Pulse Measurement
From Point Overspeed_Switch On Pulse

Put in On_Time Float Variable
ioControl Command Reference G-107

Get On-Pulse Measurement Complete Status
Digital Point Action

Function: To read the completion status of an on-pulse measurement.

Typical Use: To determine that a complete measurement has occurred before reading the measurement.

Details: • Gets the completion status of an on-pulse measurement and stores it in the Put In
parameter. The argument will contain a non-zero value (True) if the measurement is
complete or a 0 (False) if it is incomplete.

Arguments:

Standard
Example:

OptoScript
Example:

GetOnPulseMeasurementCompleteStatus(From Point)
Pulse_Complete = GetOnPulseMeasurementCompleteStatus(Pressure_Switch);

This is a function command; it returns a value of true (-1) or false (0), indicating whether a
complete measurement has occurred. The returned value can be consumed by a variable (as in
the example shown) or by a control structure, etc. See Chapter 11 of the ioControl User’s Guide
for more information.

Notes: • Use this command to see if a complete on-pulse measurement has occurred. The command
will not interfere with a current on-pulse measurement.

• Once the completion status is True, use Get On-Pulse Measurement or Get & Restart
On-Pulse Measurement to read the value.

Dependencies: • Applies only to inputs configured with the on-pulse measurement feature.
• Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO

and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

See Also: Get & Restart On-Pulse Measurement (page G-29), Get On-Pulse Measurement (page G-107)

Argument 1
From Point
On Pulse

Argument 2
Put in
Float Variable
Integer 32 Variable

Get On-Pulse Measurement Complete Status
From Point Pressure_Switch On Pulse

Put in Pulse_Complete Integer 32 Variable
G-108 ioControl Command Reference

G

Get On-Time Totalizer
Digital Point Action

NOTE: This command is for mistic I/O units only.

Function: To read digital input total on time.

Typical Use: To accumulate total on time of a device.

Details: • Reads the accumulated on time of a digital input since it was last read.
• Returns a float representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.
• Does not reset the total.

Arguments:

Standard
Example:

OptoScript
Example:

GetOnTimeTotalizer(From Point)
Pump_Runtime = GetOnTimeTotalizer(Pump_Power);

This is a function command; it returns the total time the digital input was on. The returned value
can be consumed by a variable (as shown) or by another item, such as a mathematical expression
or a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • To ensure the totalizer is cleared at start-up, use Get & Restart On-Time Totalizer once
before using this command for the first time.

• The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: • Applies only to inputs configured with the totalize-on feature.
• Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO

and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

See Also: Get & Restart On-Time Totalizer (page G-30)

Argument 1
From Point
On Totalizer

Argument 2
Put in
Float Variable
Integer 32 Variable

Get On-Time Totalizer
From Point Pump_Power On Totalizer

Put in Pump_Runtime Float Variable
ioControl Command Reference G-109

Get Period
Digital Point Action

NOTE: This command is for mistic I/O units only.

Function: To read the elapsed time during an on-off-on or an off-on-off transition of a digital input.

Typical Use: To measure the period of a slow shaft rotation.

Details: • Measurement starts on the first transition (either off-to-on or on-to-off) and stops on the
next transition of the same type (one complete cycle).

• Does not restart the period measurement.
• Returns a float representing seconds with a resolution of 100 microseconds.
• Maximum duration is 4.97 days.
• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

OptoScript
Example:

GetPeriod(From Point)
SHAFT_CYCLE = GetPeriod(SHAFT_INPUT);

This is a function command; it returns the period for the digital input. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • This command measures the first complete period only. No period measurement is
performed after the first measurement until the Get & Restart Period command is used.

• The accuracy of the value returned is limited by the input module’s turn-on and turn-off
times. Check the specifications for the module to be used.

Dependencies: • The Get & Restart Period command must be used to start the measurement.
• Applies only to inputs configured with the period feature.
• Available on mistic multifunction I/O units. For a list of mistic multifunction brains, see the

Appendix Opto 22 Brain Families.

See Also: Get & Restart Period (page G-31)

Argument 1
From Point
Period

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Period
From Point SHAFT_INPUT Period

Put in SHAFT_CYCLE Float Variable
G-110 ioControl Command Reference

G

Get Period Measurement Complete Status
Digital Point Action

NOTE: This command is for mistic I/O units only.

Function: To read the completion status of a period measurement.

Typical Use: To determine that a complete measurement has occurred before reading the measurement.

Details: • Gets the completion status of a period measurement and stores it in the Put In parameter.
The argument will contain a non-zero value (True) if the measurement is complete or a 0
(False) if it
is incomplete.

• Not available on SNAP Ethernet brains.

Arguments:

Standard
Example:

OptoScript
Example:

GetPeriodMeasurementCompleteStatus(From Point)
Period_Complete = GetPeriodMeasurementCompleteStatus(Pressure_Switch);

This is a function command; it returns a value of true (-1) or false (0), indicating whether a
complete measurement has occurred. The returned value can be consumed by a variable (as in
the example shown) or by a control structure, etc. See Chapter 11 of the ioControl User’s Guide
for more information.

Notes: • Use this command to see if a complete period measurement has occurred. The command
will not interfere with a current period measurement.

• Once the completion status is True, use Get Period or Get & Restart Period to read the value.

Dependencies: • Applies only to inputs configured with the period measurement feature.
• Available on mistic multifunction I/O units. For a list of mistic multifunction brains, see the

Appendix Opto 22 Brain Families.

See Also: Get & Restart Period (page G-31), Get Period (page G-110)

Argument 1
From Point
Period

Argument 2
Put in
Float Variable
Integer 32 Variable

Get Period Measurement Complete Status
From Point Pressure_Switch Period

Put in Period_Complete Integer 32 Variable
ioControl Command Reference G-111

Get PID Configuration Flags
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the current PID configuration options.

Typical Use: To find out current configuration options.

Details: PID configuration options can be set when you initially configure the PID loop in ioManager or
ioControl, or in strategy logic using the command Set PID Configuration Flags.
Configuration options are returned as a 32-bit integer. One or multiple options can be chosen.
Possible values (in hex) are:
• 0x00000000 = Standard; no special flags.
• 0x00000001 = Square root of input is enabled.
• 0x00000002 = If input goes out of range, output will be forced to a predetermined value.
• 0x00000004 = If input goes out of range, PID will switch to manual; if input returns to normal

range, PID will switch back to automatic.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidConfigFlags(PID Loop)
PID_CONFIG_FLAGS = GetPidConfigFlags(HEATER_3);

This is a function command; it returns an integer 32 containing the PID configuration flags from
the Ultimate I/O brain’s memory map (see Details, above). The returned value can be consumed
by a variable (as in the example shown) or by a mathematical expression, etc. See Chapter 11 of
the ioControl User’s Guide for more information.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Set PID Configuration Flags (page S-59)

Argument 1
PID Loop
PID Loop

Argument 2
Configuration Flags
Integer 32 Variable

Get PID Configuration Flags
 PID Loop HEATER_3 PID Loop

Configuration Flags PID_CONFIG_FLAGS Integer 32 Variable
G-112 ioControl Command Reference

G

Get PID Current Input
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the input value (also known as the process variable) of the PID at a specific point in time.

Typical Use: To find out current PID values.

Details: • This command is similar to Get PID Input; however, Get PID Input retrieves the input value
from the most recent scan. Since values may fluctuate between scan times, Get PID Current
Input retrieves the value right now, independent of scan time.

• The value read has the same engineering units as the specified PID input channel.
• The input can be an analog channel or a PID output (for cascaded PIDs), or it can be

determined by the strategy in the control engine using Set PID Input.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidCurrentInput(PID Loop)
PID_INPUT_VALUE = GetPidCurrentInput(HEATER_3);

This is a function command; it returns the current input value of the PID loop. The returned value
can be consumed by a variable (as in the example shown) or by an analog point, a mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Use to detect bad or out-of-range PID input values. When such a value is found, use the Set

PID Output command to change the PID output as required.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Input (page G-120), Set PID Input
(page S-65)

Argument 1
PID Loop
PID Loop

Argument 2
Input
Analog Output
Float Variable
Integer 32 Variable

Get PID Current Input
 PID Loop HEATER_3 PID Loop

Input PID_INPUT_VALUE Float Variable
ioControl Command Reference G-113

Get PID Current Setpoint
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the setpoint value of the PID at a specific point in time.

Typical Use: To verify that the setpoint of the PID is as expected.

Details: • This command is similar to Get PID Setpoint; however, Get PID Setpoint retrieves the input
value from the most recent scan. Since values may fluctuate between scan times, Get PID
Current Setpoint retrieves the value right now, independent of scan time.

• The value read has the same engineering units as the specified PID setpoint.
• The setpoint can be an analog channel or a PID output (for cascaded PIDs), or it can be

determined by the strategy in the control engine using Set PID Setpoint.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidCurrentSetpoint(PID Loop)
PID_Setpoint_Value = GetPidCurrentSetpoint(Heater_3);

This is a function command; it returns the current setpoint value of the PID loop. The returned
value can be consumed by a variable (as in the example shown) or by an analog point, a
mathematical expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Can be used to detect and log changes made to the PID setpoint.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Setpoint (page G-130), Set PID Setpoint
(page S-75)

Argument 1
PID Loop
PID Loop

Argument 2
Setpoint
Analog Output
Float Variable
Integer 32 Variable

Get PID Current Setpoint
 PID Loop Heater_3 PID Loop
Setpoint Pid_Setpoint_Value Float Variable
G-114 ioControl Command Reference

G

Get PID Feed Forward
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the PID feed forward value for applications requiring feed forward control.

Typical Use: To determine current PID values.

Details: For all four PID algorithms, Feed Forward and Feed Forward Gain values are multiplied and then
added to the output; therefore, a value of 0 in either field results in no change to the output.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidFeedForward(PID Loop)
PID_FEED_FORWARD = GetPidFeedForward(HEATER_3);

This is a function command; it returns the feed forward value for the PID loop. The returned value
can be consumed by a variable (as in the example shown) or by an analog point, a mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Set PID Feed Forward (page S-60)

Argument 1
PID Loop
PID Loop

Argument 2
Feed Forward
Analog Output
Float Variable
Integer 32 Variable

Get PID Feed Forward
 PID Loop HEATER_3 PID Loop

Feed Forward PID_FEED_FORWARD Float Variable
ioControl Command Reference G-115

Get PID Feed Forward Gain
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the feed forward gain value of the PID output for applications requiring feed forward
control.

Typical Use: To determine current PID values.

Details: For all four PID algorithms, Feed Forward and Feed Forward Gain values are multiplied and then
added to the output; therefore, a value of 0 in either field results in no change to the output.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidFeedForwardGain(PID Loop)
PID_FEED_FD_GAIN = GetPidFeedForwardGain(HEATER_3);

This is a function command; it returns the feed forward gain value of the PID loop. The returned
value can be consumed by a variable (as in the example shown) or by an analog point, a
mathematical expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Set PID Feed Forward Gain (page S-61)

Argument 1
PID Loop
PID Loop

Argument 2
Feed Fwd Gain
Analog Output
Float Variable
Integer 32 Variable

Get PID Feed Forward Gain
 PID Loop HEATER_3 PID Loop

Feed Fwd Gain PID_FEED_FD_GAIN Float Variable
G-116 ioControl Command Reference

G

Get PID Forced Output When Input Over Range
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the forced value that will be sent to the PID output when the input is over the established
range.

Typical Use: To determine current PID values.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidForcedOutputWhenInputOverRange(PID Loop)
PID_OUTPUT_OVER_RANGE = GetPidForcedOutputWhenInputOverRange(HEATER_3);

This is a function command; it returns the output that will be forced if the input is over the normal
range. The returned value can be consumed by a variable (as in the example shown) or by an
analog point, a mathematical expression, etc. See Chapter 11 of the ioControl User’s Guide for
more information.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Get PID Forced Output When Input Under Range (page G-118), Set PID Forced Output When Input
Over Range (page S-62)

Argument 1
PID Loop
PID Loop

Argument 2
Forced Output
Analog Output
Float Variable
Integer 32 Variable

Get PID Forced Output When Input Over Range
 PID Loop HEATER_3 PID Loop

Forced Output PID_OUTPUT_OVER_RANGE Float Variable
ioControl Command Reference G-117

Get PID Forced Output When Input Under Range
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the forced value that will be sent to the PID output when the input is under the
established range.

Typical Use: To determine current PID values.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidForcedOutputWhenInputUnderRange(PID Loop)
PID_OUTPUT_UNDER_RANGE = GetPidForcedOutputWhenInputUnderRange(HEATER_3);

This is a function command; it returns the output that will be forced if the input is under the
normal range. The returned value can be consumed by a variable (as in the example shown) or by
an analog point, a mathematical expression, etc. See Chapter 11 of the ioControl User’s Guide
for more information.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Get PID Forced Output When Input Over Range (page G-117), Set PID Forced Output When Input
Under Range (page S-63)

Argument 1
PID Loop
PID Loop

Argument 2
Forced Output
Analog Output
Float Variable
Integer 32 Variable

Get PID Forced Output When Input Under Range
 PID Loop HEATER_3 PID Loop

Forced Output PID_OUTPUT_UNDER_RANGE Float Variable
G-118 ioControl Command Reference

G

Get PID Gain
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: Reads the gain value from the PID.

Typical Use: To store PID parameters for later use.

Details: Reads the gain value from the PID in the I/O unit. If the PID is disabled or the I/O unit is disabled,
the last known value will be returned instead (the IVAL).

Arguments:

Standard
Example:

OptoScript
Example:

GetPidGain(PID Loop)
Zone08_Gain = GetPidGain(Extruder_Zone08);

This is a function command; it returns the gain value from the PID. The returned value can be
consumed by a variable (as in the example shown) or by an analog point, a mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• To store the result, always use a float variable.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Set PID Gain (page S-64)

Argument 1
PID Loop
PID Loop

Argument 2
Gain
Analog Output
Float Variable
Integer 32 Variable

Get PID Gain
 PID Loop Extruder_Zone08 PID Loop

Gain Zone08_Gain Float Variable
ioControl Command Reference G-119

Get PID Input
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the input value (also known as the process variable) of the PID.

Typical Use: To find out the PID input value at the time of the most recent scan.

Details: • The value read has the same engineering units as the specified PID input channel.
• This command retrieves the input value from the most recent scan. To find out the value

right now, independent of scan time, use Get PID Current Input.
• The input can be an analog channel or a PID output (for cascaded PIDs), or it can be

determined by the strategy in the control engine using Set PID Input.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidInput(PID Loop)
PID_INPUT_VALUE = GetPidInput(HEATER_3);

This is a function command; it returns the input value of the PID loop. The returned value can be
consumed by a variable (as in the example shown) or by an analog point, a mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Use to detect bad or out-of-range PID input values. When such a value is found, use the Set

PID Output command to change the PID output as required.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Current Input (page G-113), Set PID Input
(page S-65)

Argument 1
PID Loop
PID Loop

Argument 2
Input
Analog Output
Float Variable
Integer 32 Variable

Get PID Input
 PID Loop HEATER_3 PID Loop

Input PID_INPUT_VALUE Float Variable
G-120 ioControl Command Reference

G

Get PID Input High Range
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the highest expected value from the PID’s input.

Typical Use: To determine current PID configuration.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidInputHighRange(PID Loop)
PID_HIGH_RANGE = GetPidInputHighRange(HEATER_3);

This is a function command; it returns the highest valid input of the PID loop. The returned value
can be consumed by a variable (as in the example shown) or by an analog point, a mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Input Low Range (page G-122), Set PID
Input High Range (page S-66)

Argument 1
PID Loop
PID Loop

Argument 2
High Range
Analog Output
Float Variable
Integer 32 Variable

Get PID Input High Range
 PID Loop HEATER_3 PID Loop

High Range PID_High_Range Float Variable
ioControl Command Reference G-121

Get PID Input Low Range
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the lowest expected value from the PID’s input.

Typical Use: To determine current PID configuration.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidInputLowRange(PID Loop)
PID_LOW_RANGE = GetPidInputLowRange(HEATER_3);

This is a function command; it returns the lowest valid input of the PID loop. The returned value
can be consumed by a variable (as in the example shown) or by an analog point, a mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Input High Range (page G-121), Set PID
Input Low Range (page S-67)

Argument 1
PID Loop
PID Loop

Argument 2
Low Range
Analog Output
Float Variable
Integer 32 Variable

Get PID Input Low Range
 PID Loop HEATER_3 PID Loop

Low Range PID_LOW_RANGE Float Variable
G-122 ioControl Command Reference

G

Get PID Max Output Change
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the maximum output change limit of the PID.

Typical Use: To find out current PID parameters and save them for future use.

Details: • The max output change value defines the maximum amount that the PID output is allowed to
change per scan period. This value makes sure the output will ramp up, for example, rather
than increasing too quickly. The units are the same as those defined for the PID output point.

• The default value is the range of the output point. This allows the PID output to move as
much as 100 percent per scan period. For example, if the PID output point is 4–20 mA, 16.00
would be returned by default, representing 100 percent of the range.

• Note that the max output change limits the PID algorithm and may slow it down.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidMaxOutputChange(PID Loop)
PID_MAX_LIMIT = GetPidMaxOutputChange(HEATER_3);

This is a function command; it returns the maximum possible change in the output of the PID loop.
The returned value can be consumed by a variable (as in the example shown) or by an analog
point, a mathematical expression, etc. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Max Output Change (page G-123), Set PID
Scan Time (page S-74)

Argument 1
PID Loop
PID Loop

Argument 2
Max Change
Analog Output
Float Variable
Integer 32 Variable

Get PID Max Output Change
 PID Loop HEATER_3 PID Loop

Max Change PID_MAX_LIMIT Float Variable
ioControl Command Reference G-123

Get PID Min Output Change
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the minimum amount of change that must occur before the PID output will change.

Typical Use: To find out current PID parameters and save them for future use.

Details: • The min output change value defines how much the PID output must change for the change
to be applied. A minimum value avoids constant changing, which might wear out valve
linkage, for example. The units are the same as those defined for the PID output channel.

• The default value is zero (no minimum). The value must be a positive number.
• The change is applied when it exceeds the minimum in either direction (up or down).

Arguments:

Standard
Example:

OptoScript
Example:

GetPidMinOutputChange(PID Loop)
PID_MIN_LIMIT = GetPidMinOutputChange(HEATER_3);

This is a function command; it returns the minimum possible change in the output of the PID loop.
The returned value can be consumed by a variable (as in the example shown) or by an analog
point, a mathematical expression, etc. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Max Output Change (page G-123), Set PID
Min Output Change (page S-69), Set PID Scan Time (page S-74)

Argument 1
PID Loop
PID Loop

Argument 2
Min Change
Analog Output
Float Variable
Integer 32 Variable

Get PID Min Output Change
 PID Loop HEATER_3 PID Loop

Min Change PID_MIN_LIMIT Float Variable
G-124 ioControl Command Reference

G

Get PID Mode
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read whether the PID is in auto or manual mode.

Typical Use: To store current PID parameters for later use.

Details: • Reads auto/manual mode from the PID in the I/O unit. If the PID is disabled or the I/O unit is
disabled, the last known value will be returned instead (the IVAL).

• Returns a zero if in auto mode or a 1 if in manual mode.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidMode(PID Loop)
ZONE08_MODE = GetPidMode(Extruder_Zone08);

This is a function command; it returns a zero (auto mode) or a 1 (manual mode). The returned
value can be consumed by a variable (as in the example shown) or by a mathematical expression,
a control structure, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

See Also: Set PID Mode (page S-70)

Argument 1
PID Loop
PID Loop

Argument 2
Mode
Integer 32 Variable

Get PID Mode
 PID Loop Extruder_Zone08 PID Loop

Mode ZONE08_MODE Integer 32 Variable
ioControl Command Reference G-125

Get PID Output
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the output value of the PID.

Typical Use: To read the current PID output and store it for future use.

Details: The value read has the same engineering units as the specified PID output channel.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidOutput(PID Loop)
TPO_OUTPUT = GetPidOutput(HEATER_3);

This is a function command; it returns the output value of the PID loop. The returned value can
be consumed by an analog output (as in the example shown) or by a variable, a mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• This command can also be used to detect when the PID output is updated (which is always

at the end of the scan period).

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Set PID Output (page S-71)

Argument 1
PID Loop
PID Loop

Argument 2
Output
Analog Output
Float Variable
Integer 32 Variable

Get PID Output
 PID Loop HEATER_3 PID Loop

Output TPO_OUTPUT Analog Output
G-126 ioControl Command Reference

G

Get PID Output High Clamp
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the high clamp value currently set for the PID output.

Typical Use: To determine current PID values.

Details: The output low clamp and high clamp values define the range of output for this PID loop.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidOutputHighClamp(PID Loop)
PID_HIGH_CLAMP = GetPidOutputHighClamp(HEATER_3);

This is a function command; it returns the highest possible value for the output of the PID loop.
The returned value can be consumed by a variable (as in the example shown) or by an analog
point, a mathematical expression, etc. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Output Low Clamp (page G-128), Set PID
Output High Clamp (page S-72)

Argument 1
PID Loop
PID Loop

Argument 2
High Clamp
Analog Output
Float Variable
Integer 32 Variable

Get PID Output High Clamp
 PID Loop HEATER_3 PID Loop

High Clamp PID_HIGH_CLAMP Float Variable
ioControl Command Reference G-127

Get PID Output Low Clamp
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the low clamp value currently set for the PID output.

Typical Use: To determine current PID values.

Details: The output low clamp and high clamp values define the range of output for this PID loop.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidOutputLowClamp(PID Loop)
PID_LOW_CLAMP = GetPidOutputLowClamp(HEATER_3);

This is a function command; it returns the lowest possible value for the output of the PID loop.
The returned value can be consumed by a variable (as in the example shown) or by an analog
point, a mathematical expression, etc. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Output High Clamp (page G-127), Set PID
Output Low Clamp (page S-73)

Argument 1
PID Loop
PID Loop

Argument 2
Low Clamp
Analog Output
Float Variable
Integer 32 Variable

Get PID Output Low Clamp
 PID Loop HEATER_3 PID Loop

Low Clamp PID_LOW_CLAMP Float Variable
G-128 ioControl Command Reference

G

Get PID Scan Time
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: Gets the PID calculation interval (the scan time).

Typical Use: To store current PID parameters for later use.

Details: Reads the Scan Time value from the PID in the I/O unit. If the PID is disabled or the I/O unit is
disabled, the last known value will be returned instead (the IVAL).

Arguments:

Standard
Example:

OptoScript
Example:

GetPidScanTime(PID Loop)
Zone08_Scan_Time = GetPidScanTime(Extruder_Zone08);

This is a function command; it returns the PID calculation interval (scan time) for the PID loop.
The returned value can be consumed by a variable (as in the example shown) or by an analog
point, a mathematical expression, etc. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• To store the result, always use a float variable.

See Also: Set PID Scan Time (page S-74)

Argument 1
PID Loop
PID Loop

Argument 2
Scan Time (sec)
Analog Output
Float Variable
Integer 32 Variable

Get PID Scan Time
 PID Loop Extruder_Zone08 PID Loop

Scan Time (sec) Zone08_Scan_Time Float Variable
ioControl Command Reference G-129

Get PID Setpoint
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the setpoint value of the PID.

Typical Use: To verify that the setpoint of the PID is as expected and to store the setpoint for later use.

Details: • The value read has the same engineering units as the specified PID setpoint.
• This command retrieves the setpoint value from the most recent scan. To find out the value

right now, independent of scan time, use Get PID Current Setpoint.
• The setpoint can be an analog channel or a PID output (for cascaded PIDs), or it can be

determined by the strategy in the control engine using Set PID Setpoint.

Arguments:

Standard
Example:

OptoScript
Example:

GetPidSetpoint(PID Loop)
PID_Setpoint_Value = GetPidSetpoint(Heater_3);

This is a function command; it returns the setpoint value of the PID loop. The returned value can
be consumed by a variable (as in the example shown) or by an analog point, a mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Can be used to detect and log changes made to the PID setpoint.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Current Setpoint (page G-114), Set PID
Setpoint (page S-75)

Argument 1
PID Loop
PID Loop

Argument 2
Setpoint
Analog Output
Float Variable
Integer 32 Variable

Get PID Setpoint
 PID Loop Heater_3 PID Loop
Setpoint Pid_Setpoint_Value Float Variable
G-130 ioControl Command Reference

G

Get PID Status Flags
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To read the current state of PID flags.

Typical Use: To determine whether input is below or above normal range and whether the output is being
forced.

Details: Returns a bit mask that indicates current PID status data. More than one flag can be set at a time.
Use bitwise commands to get each flag. Flag values are:
• 0x00000001 = Input is below input low range
• 0x00000002 = Input is above input high range
• 0x00000004 = Input was out of range and output is being forced to a predetermined value

set during PID configuration

Arguments:

Standard
Example:

OptoScript
Example:

GetPidStatusFlags(PID Loop)
PID_STATUS_FLAGS = GetPidStatusFlags(HEATER_3);

This is a function command; it returns an integer 32 containing the PID status flags from the
Ultimate I/O brain’s memory map. Possible values are listed above.
The returned value can be consumed by a variable (as in the example shown) or by a
mathematical expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to read the actual value from the
PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Configuration Flags (page G-112), Set PID
Configuration Flags (page S-59)

Argument 1
PID Loop
PID Loop

Argument 2
Status Flags
Integer 32 Variable

Get PID Status Flags
 PID Loop HEATER_3 PID Loop

Status Flags PID_STATUS_FLAGS Integer 32 Variable
ioControl Command Reference G-131

Get PID Tune Derivative
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: Reads the derivative tuning value from the PID.

Typical Use: To store current PID parameters for later use.

Details: Reads the derivative value from the PID in the I/O unit. If the PID is disabled or the I/O unit is
disabled, the last known value will be returned instead (the IVAL).

Arguments:

Standard
Example:

OptoScript
Example:

GetPidTuneDerivative(PID Loop)
Zone08_Derivative = GetPidTuneDerivative(Extruder_Zone08);

This is a function command; it returns the derivative value from the PID loop. The returned value
can be consumed by a variable (as in the example shown) or by an analog point, a mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• To store the result, always use a float variable.

See Also: Set PID Tune Derivative (page S-76)

Argument 1
PID Loop
PID Loop

Argument 2
Tune Derivative
Analog Output
Float Variable
Integer 32 Variable

Get PID Tune Derivative
 PID Loop Extruder_Zone08 PID Loop

Tune Derivative Zone08_Derivative Float Variable
G-132 ioControl Command Reference

G

Get PID Tune Integral
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: Reads the Integral tuning value from the PID.

Typical Use: To store current PID parameters for later use.

Details: Reads the Integral value from the PID in the I/O unit. If the PID is disabled or the I/O unit is
disabled, the last known value will be returned instead (the IVAL).

Arguments:

Standard
Example:

OptoScript
Example:

GetPidTuneIntegral(From PID Loop)
Zone08_Integral = GetPidTuneIntegral(Extruder_Zone08);

This is a function command; it returns the integral value from the PID loop. The returned value
can be consumed by a variable (as in the example shown) or by an analog point, a mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• To store the result, always use a float variable.

See Also: Set PID Tune Integral (page S-77)

Argument 1
PID Loop
PID Loop

Argument 2
Tune Integral
Analog Output
Float Variable
Integer 32 Variable

Get PID Tune Integral
 PID Loop Extruder_Zone08 PID Loop

Tune Integral Zone08_Integral Float Variable
ioControl Command Reference G-133

Get Pointer From Name
Pointers Action

Function: To assign an object to a pointer based on the object’s name.

Typical Use: To help process requests from peers when the object needed may change dynamically.

Details: • If a variable of the specified name is not found, the pointer is set to null.
• The variable name must match the pointer's type. For example, if the pointer is a float

pointer, the variable name must be for a float variable.
• The variable name is case sensitive.

Arguments:

Standard
Example:

OptoScript
Example:

GetPointerFromName(Name, Pointer)
GetPointerFromName("My_Integer", pInteger);

This is a procedure command; it does not return a value.

Notes: For more information on peer-to-peer communication, see “Communication Commands” in
Chapter 10 of the ioControl User’s Guide.

See Also: Move to Pointer (page M-19)

Argument 1
Name
String Literal
String Variable

Argument 2
Pointer
Pointer Variable

Get Pointer From Name
Name "My_Integer" String Literal
Pointer pInteger Pointer Variable
G-134 ioControl Command Reference

G

Get Seconds
Time/Date Action

Function: To read the seconds (0 through 59) from the control engine’s real-time clock/calendar and put it
into a numeric variable.

Typical Use: To use seconds information in an ioControl program.

Details: • The destination variable can be an integer or a float, although an integer is preferred.
• If the current time is 08:51:26, this action would place the value 26 into the Put In

parameter (Argument 1).

Arguments:

Standard
Example:

OptoScript
Example:

GetSeconds()
SECONDS = GetSeconds();

This is a function command; it returns the second (0 through 59) from the control engine’s
real-time clock. The returned value can be consumed by a variable (as in the example shown) or
by a mathematical expression, a control structure, etc. See Chapter 11 of the ioControl User’s
Guide for more information.

Notes: • This is a one-time read of the second. If the second changes, you will need to execute this
command again to get the value of the current second.

• Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current seconds value.

See Also: Get Seconds Since Midnight (page G-136), Get Day (page G-49), Get Day of Week (page G-50),
Get Hours (page G-63), Get Minutes (page G-86), Get Month (page G-97), , Get Year (page G-145),
Set Day (page S-17), Set Hours (page S-25), Set Minutes (page S-43), Set Month (page S-57), Set
Seconds (page S-78), Set Year (page S-89)

Argument 1
Put in
Float Variable
Integer 32 Variable

Get Seconds
Put In SECONDS Integer 32 Variable
ioControl Command Reference G-135

Get Seconds Since Midnight
Time/Date Action

Function: Gets the number of seconds since midnight.

Typical Use: In place of timers to determine time between events or to time stamp an event with a number
rather than a string.

Details: Value returned is an integer from 0 to 86,399.

Arguments:

Standard
Example:

OptoScript
Example:

GetSecondsSinceMidnight()
TIME_IN_SECONDS = GetSecondsSinceMidnight();

This is a function command; it returns the number of seconds since midnight. The returned value
can be consumed by a variable (as in the example shown) or by a mathematical expression, a
control structure, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: To find elapsed time in HOURS, MINUTES, SECONDS since midnight using standard commands:

Move the seconds to an integer 32 variable: TEMP_VAR
Divide TEMP_VAR by: 3600 and move to: HOURS
MODULO TEMP_VAR by: 3600 and move to: TEMP_VAR
Divide TEMP_VAR by: 60 and move to: MINUTES
MODULO TEMP_VAR by: 60 and move to: SECONDS.

To find the same thing using OptoScript code:
TEMP_VAR = GetSecondsSinceMidnight();

HOURS = TEMP_VAR / 3600;

MINUTES = (TEMP_VAR % 3600 / 60;

SECONDS = (TEMP_VAR % 3600) % 60;

See Also: Get Seconds (page G-135)

Argument 1
Put in
Float Variable
Integer 32 Variable

Get Seconds Since Midnight
Put in TIME_IN_SECONDS Integer 32 Variable
G-136 ioControl Command Reference

G

Get Severity of Current Error
Error Handling Action

Function: To read the severity of the oldest error in the message queue.

Typical Use: To allow a chart to perform error handling.

Details: • Valid severity values are:

0 = Queue is empty
4 = Info
8 = Warning
16 = Error

• The same error is read each time unless Remove Current Error and Point to Next Error is
used first.

• The message queue can hold up to 1000 errors.

Arguments:

Standard
Example:

OptoScript
Example:

GetSeverityOfCurrentError()
nCurrentError = GetSeverityOfCurrentError();

This is a function command; it returns the severity value of the error. The returned value can be
consumed by a variable (as shown) or by another item, such as a control structure.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: For detailed information on errors, use Control Engine Inspect in Debug mode to view the
message queue.

See Also: Get Error Code of Current Error (page G-52), Clear All Errors (page C-18), Get Error Count
(page G-53), Remove Current Error and Point to Next Error (page R-22)

Argument 1
Put In
Float Variable
Integer 32 Variable

Get Severity of Current Error
Put In nCurrentError Integer 32 Variable
ioControl Command Reference G-137

Get String Length
String Action

Function: To get the length of a string.

Typical Use: To determine if a string is empty prior to searching it for a character.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• An empty string has a length of zero.
• The string length is not the same as the width. Width is the maximum string length and is

set in the ioControl Configurator; it does not change at run time. String length, on the other
hand, may change dynamically as the string is modified at run time.

• Spaces and nulls count as part of the length.
• A string with width 10 containing “Hello ” has a length of six (five for “Hello” plus one for

the trailing space).

Arguments:

Standard
Example:

The following example gets the length of the string MY STRING (for example, if MY STRING is
“ABC” then STRING LEN is 3):

OptoScript
Example:

GetStringLength(Of String)
STRING_LEN = GetStringLength(MY_STRING);

This is a function command; it returns the length of the string. The returned value can be
consumed by a variable (as in the example shown) or by a mathematical expression, a control
structure, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• Use before Get Nth Character to stay within the string length.

See Also: Get Nth Character (page G-100)

Argument 1
Of String
String Literal
String Variable

Argument 2
Put Result in
Float Variable
Integer 32 Variable

Get String Length
Of String MY_STRING String Literal

Put Result in STRING_LEN Integer 32 Variable
G-138 ioControl Command Reference

G

Get Substring
String Action

Function: To copy a portion of a string.

Typical Uses: To parse or extract data from a string, to skip leading or trailing characters, or to extract data from
strings that may contain starting and ending character sequences generated by barcode readers
or scales.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• Valid range for Start At Index (Argument 2) is 0 to the string length minus one. If it is less

than 0 or longer than the From String parameter, a null string is copied to the substring.
• If the combination of the Start At Index (Argument 2) and Num. Characters (Argument 3)

extend beyond the length of the source string, only the available portion of the source string
will be returned.

• The following are examples of this command applied to the string “MONTUEWEDTHUFRI”:

Arguments:

Standard
Example:

The following example gets a single day from the string “MONTUEWEDTHUFRI”; quotes are
shown here for clarity only. Do not use them in standard commands.

OptoScript
Example:

GetSubstring(From String, Start at Index, Num. Characters, Put Result in)
GetSubstring("MONTUEWEDTHUFRI", INDEX, 3, STRING);

This is a procedure command; it does not return a value. Quotes are required in OptoScript code.

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• You can get text that follows a delimiter (such as a space) within a string. Create a loop that

first uses Get Nth Character to extract a character, then compares it to the delimiter
(character 32 in the case of a space). If the character is equal to the delimiter, add 1 to the N
argument and use the new N as the Start At parameter above.

• See Move from String Table for a similar example.

See Also: Get Nth Character (page G-100)

Start At Number of
Characters

Substring Returned

0 3 “MON”
3 3 “TUE”
0 4 “MONT”

13 3 “RI”
15 5 “”

Argument 1
From String
String Literal
String Variable

Argument 2
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Num. Characters
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Result in
String Variable

Get Substring
From String “MONTUEWEDTHUFRI” String Literal

Start at Index INDEX Integer 32 Variable
Num. Characters 3 Integer 32 Literal

Put Result in STRING String Variable
ioControl Command Reference G-139

Get System Time
Time/Date Action

Function: Gets the number of seconds since the control engine has been turned on.

Typical Use: Accumulate “up-time.”

Details: Value returned is an integer.

Arguments:

Standard
Example:

OptoScript
Example:

GetSystemTime()
TIME_IN_SECONDS = GetSystemTime();

This is a function command; it returns the number of seconds since the control engine was last
turned on. The returned value can be consumed by a variable (as in the example shown) or by a
mathematical expression, a control structure, etc. See Chapter 11 of the ioControl User’s Guide
for more information.

See Also: Get Seconds Since Midnight (page G-136)

Argument 1
Put in
Float Variable
Integer 32 Variable

Get System Time
Put in TIME_IN_SECONDS Integer 32 Variable
G-140 ioControl Command Reference

G

Get Target Address State
I/O Unit Action

Function: To determine which target addresses on an I/O unit in a redundant system are enabled and which
address is active.

Typical Use: To determine which networks in a redundant system are enabled and which network is active.

Details: • A target address is the IP address of an Ethernet interface on an I/O unit.
• In a redundant network architecture, you can assign two target addresses to an I/O unit. In

ioControl these are called the Primary Address and the Secondary Address. By default, the
Primary Address is used, but the server will switch to the Secondary Address if the primary
address is not available.

• Each target address has an enabled state and an active state. If both target addresses are
enabled, they are available to be used. However, only one address can be used at a given
time, so there can only be one active address.

• This command returns an Enable Mask value and an Active Mask value for a given I/O unit.
• The Enable Mask indicates which target addresses are active as follows:

0=No addresses are enabled
1=Only the Primary Address is enabled
2=Only the Secondary Address is enabled
3=Both addresses are enabled.

• The Active Mask indicates which address is active as follows:
0=No address is active
1=Primary Address is active
2=Secondary Address is active

Arguments:

Standard
Example:

OptoScript
Example:

GetTargetAddressState(Enable Mask, Active Mask, I/O Unit)
GetTargetAddressState(ENABLE_MASK, ACTIVE_MASK, UNIT);

This is a procedure command; it does not return a value.

Argument 1
Enable Mask
Integer 32 Variable

Argument 2
Active Mask
Integer 32 Variable

Argument 2
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-ENET-S64
SNAP-UP1-M64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Get Target Address State
Enable Mask ENABLE_MASK Integer 32 Variable
Active Mask ACTIVE_MASK Integer 32 Variable

I/O Unit UNIT SNAP-UP1-ADS
ioControl Command Reference G-141

Notes: • A fully redundant system may also include ioDisplay clients and OptoOPCServers. These
commands only deal with the control engine communicating with I/O units. ioDisplay and
OptoOPCServer have their own mechanism for controlling their use of the network.

See Also: Set All Target Address States (page S-5), Set Target Address State (page S-81)

Get Type From Name
Miscellaneous Action

Function: To find out the data type (string, floating point, etc.) of a variable in the strategy.

Typical Use: Used with the command Get Value From Name, to find out the data type of a variable and pass
it to another software application or device that knows only the variable’s name.

Details: • This command does not handle pointers. If the variable is a pointer, a zero will be returned.
• Reads the data type of the variable named in Argument 1 and places a bitmask in Argument

2 representing the data type. Possible values (in hex) are as follows:

If a variable is persistent, the first digit in hex will be a 4 (bit 30 is set). Examples:

If a variable is local to a subroutine, the first digit in hex will be a 1 (bit 28 is set). Examples:

Arguments:

Value in Hex Data Type Value in Hex Data Type

00020002 Digital I/O Point 00800004 Up Timer

00020010 Analog I/O Point 00810000 Integer 32 Table

00400005 Mixed I/O Unit 00810001 Integer 64 Table

00400006 Digital 64 I/O Unit 00810002 Float Table

00400007 Mixed 64 I/O Unit 01000000 String

00800000 Integer 32 01010000 String Table

00800001 Integer 64 02000000 Chart

00800002 Float 09000000 Communication Handle

00800003 Down Timer

00800001
40800001

Integer 64
Persistent Integer 64

01010000
41010000

String Table
Persistent String Table

10800000 Local Integer 23 10800001 Local Integer 64

Argument 1
Name
String Literal
String Variable

Argument 2
Put in
Integer 32 Variable
G-142 ioControl Command Reference

G

Standard
Example:

OptoScript
Example:

GetTypeFromName(Name)
DATA_TYPE = GetTypeFromName(Variable_Name);

This is a function command; it returns the data type of the variable in the form of a bitmask. The
returned value can be consumed by a variable (as in the example shown) or by a mathematical
expression, a control structure, etc. See Chapter 11 of the ioControl User’s Guide for more
information.

See Also: Get Value From Name (page G-143)

Get Value From Name
Miscellaneous Action

Function: To find out the value of a variable named in the strategy.

Typical Use: To pass the value of a variable to another software application or device that knows the variable’s
name. In a subroutine, to find out the current value of a global variable whose name is known.

Details: • Gets the value of the variable named in Argument 1 and places that value in the form of a
string into Argument 2.

• The value of the variable named in Argument 1 can be of various types; it will automatically
be converted into a string.

• The string variable in Argument 2 must be wide enough to fit any value (converted into a
string) that may go there.

• This command can be used with most non-pointer types. It won’t work with parameters
passed into a subroutine, but can be used with local subroutine variables.

• Types supported include: string and numeric table elements, strings, communication
handles, numeric variables, points, and boards.

• If used in a subroutine to find out the current value of a global variable, the subroutine must
know the variable’s name. The name can be passed in via a string or a string table.

• To get the value of an element in a table, follow the name of the variable with the desired
index in square brackets. For example, MyTable[2] would return the value of the third
element in MyTable as a string (Argument 2).

Arguments:

Standard
Example:

Get Type From Name
Name Variable_Name String Literal
Put in DATA_TYPE Integer 32 Variable

Argument 1
Name
String Literal
String Variable

Argument 2
Put Result In
String Variable

Argument 3
Put Status In
Integer 32 Variable

Get Value From Name
Name Item_Count String Variable
ioControl Command Reference G-143

OptoScript
Example:

GetValueFromName(Name, Put Result In)
Status = GetValueFromName(Item_Count, Production);

This is a function command; it returns the value of the variable in the form of a string. The
returned value can be consumed by a variable (as shown in Status Codes below) or by a
mathematical expression, a control structure, etc. See Chapter 11 of the ioControl User’s Guide
for more information.

Notes: • See “Miscellaneous Commands” in Chapter 10 of the ioControl User’s Guide.
• If you need to know the data type of the variable named in Argument 1, use the command

Get Type From Name.
• If you need to use the variable’s value in a mathematical computation, convert the string to

the data type you need using one of the Convert commands.

Status Codes: 0 = Success
-28 = Object not found. Variable doesn’t exist or is spelled incorrectly (name is case-sensitive), or
the variable is a pointer or other unsupported type.
-36 = Feature not implemented. The type of the object passed is not yet supported.
-69 = Variable named in Argument 1 not found. Check the name and case.

See Also: Get Type From Name (page G-142), Convert String to Float (page C-52), Convert String to Integer
32 (page C-54), Convert String to Integer 64 (page C-55)

Put Result In Production String Variable
Put Status In Status Integer 32 Variable
G-144 ioControl Command Reference

G

Get Year
Time/Date Action

Function: To read the year value (2000 through 2099) from the control engine’s real-time clock/calendar and
put it into a numeric variable.

Typical Use: To use year information in an ioControl program.

Details: • The destination variable can be an integer or a float, although an integer is preferred.
• If the current date is March 2, 2002, this action would place the value 2002 into the Put In

parameter (Argument 1).

Arguments:

Standard
Example:

OptoScript
Example:

GetYear()
YEAR = GetYear();

This is a function command; it returns the four digits of the year (2000 through 2099). The
returned value can be consumed by a variable (as in the example shown) or by a mathematical
expression, a control structure, etc. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: • This is a one-time read of the year. If the year changes, you will need to execute this
command again to get the value of the current year.

• Put this command in a small program loop that executes frequently to ensure that the
variable always contains the current year value.

See Also: Get Day (page G-49), Get Day of Week (page G-50), Get Hours (page G-63), Get Minutes
(page G-86), Get Month (page G-97), Get Seconds (page G-135), Set Day (page S-17), Set Hours
(page S-25), Set Minutes (page S-43), Set Month (page S-57), Set Seconds (page S-78), Set Year
(page S-89)

Argument 1
Put in
Float Variable
Integer 32 Variable

Get Year
Put In YEAR Integer 32 Variable
ioControl Command Reference G-145

Greater?
Logical Condition

Function: To determine if one numeric value is greater than another.

Typical Use: To determine if a timer has reached a limit.

Details: • Determines if Argument 1 is greater than Argument 2. Examples:

• Evaluates True (non-zero) if Argument 1 is greater than Argument 2, False (zero) otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the > operator.
if (CALCULATED_VALUE > 1000) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. For more on
comparison operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• Use Within Limits? to test for an approximate match. To test for less than or equal, use
either Less Than or Equal? or the false exit.

See Also: Less? (page L-1) Not Equal? (page N-4) Greater Than or Equal? (page G-148) Less Than or Equal?
(page L-3) Within Limits? (page W-1)

Argument 1 Argument 2 Result
0 0 False
-1 0 False
-1 -3 True

22.221 22.220 True

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
Than
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Is CALCULATED_VALUE Integer 32 Variable
Greater?

Than 1000 Integer 32 Literal
G-146 ioControl Command Reference

G

Greater Than Numeric Table Element?
Logical Condition

Function: To determine if a numeric value is greater than a specified value in a float or integer table.

Typical Use: To store peak values.

Details: • Determines if one value (Argument 1) is greater than another (a value at index Argument 2 in
float or integer table Argument 3). Examples:

• Evaluates True (non-zero) if the first value is greater than the second, False (zero) otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the > operator.
if (THIS_READING > TABLE_OF_READINGS[TABLE_INDEX]) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. For more on
comparison operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• To test for less than or equal to, use either Less Than or Equal to Numeric Table Element? or
the False exit.

Queue Errors: -12 = Invalid table index.

See Also: Less Than Numeric Table Element? (page L-2) Not Equal to Numeric Table Element? (page N-5)
Greater Than or Equal To Numeric Table Element? (page G-149) Less Than or Equal to Numeric
Table Element? (page L-4)

Value 1 Value 2 Result
0.0 0.0 False

0.0001 0.0 True
-98.765 -98.765 False

1 0 True
22221 2222 True

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
At Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Is THIS_READING Float Variable
Greater Than Numeric Table Element?

At Index TABLE_INDEX Integer 32 Variable
Of Table TABLE_OF_READINGS Float Table
ioControl Command Reference G-147

Greater Than or Equal?
Logical Condition

Function: To determine if one numeric value is greater than or equal to another.

Typical Use: To determine if a value has reached an upper limit.

Details: • Determines if Argument 1 is greater than or equal to Argument 2. Examples:

• Evaluates True (non-zero) if the first value is greater than or equal to the second, False (zero)
otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the >= operator.
if (ROOM_TEMP >= 78.5000) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. For more on
comparison operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• Use Within Limits? to test for an approximate match. To test for less than, use either Less?
or the False exit.

• When using analog values or digital features in this command, be sure to take into
consideration the units that the value is read in and adjust the test values accordingly.

See Also: Less? (page L-1) Not Equal? (page N-4) Less Than or Equal? (page L-3) Within Limits? (page W-1)

Argument 1 Argument 2 Result
0 0 True
1 0 True

-32768 -32767 False
22221 2222 True

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
To
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Is ROOM_TEMP Analog Input
Greater Than or Equal?

To 78.5000 Float Literal
G-148 ioControl Command Reference

G

Greater Than or Equal To Numeric Table Element?
Logical Condition

Function: To determine if a numeric value is greater than or equal to a specified value in a float or
integer table.

Typical Use: To store peak values.

Details: • Determines if one value (Argument 1) is greater than or equal to another (a value at index
Argument 2 in float or integer table Argument 3). Examples:

• Evaluates True (non-zero) if the first value is greater than or equal to the second, False (zero)
otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the >= operator.
if (THIS_READING >= TABLE_OF_READINGS[TABLE_INDEX]) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. For more on
comparison operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• To test for less than, use either Less Than Table Element? or the False exit.

Value 1 Value 2 Result
0.0 0.0 True

0.0001 0.0 True
22.22 22.222 False

-32768 -32767 False
22221 2222 True

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
At Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Is THIS_READING Float Variable
Greater Than or Equal to Numeric Table Element?

At Index TABLE_INDEX Integer 32 Variable
Of Table TABLE_OF_READINGS Float Table
ioControl Command Reference G-149

Queue Errors: -12 = Invalid table index.

See Also: Less Than Numeric Table Element? (page L-2) Not Equal to Numeric Table Element? (page N-5)
Greater Than Numeric Table Element? (page G-147) Less Than or Equal to Numeric Table
Element? (page L-4)
G-150 ioControl Command Reference

H
 H
Hyperbolic Cosine
Mathematical Action

Function: To derive the hyperbolic cosine of a value.

Typical Use: To solve hyperbolic calculations.

Details: Calculates the hyperbolic cosine of Argument 1 and places the result in Argument 2.

Arguments:

Standard
Example:

OptoScript
Example:

HyperbolicCosine(Of)
ANSWER = HyperbolicCosine(2.0);

This is a function command; it returns the hyperbolic cosine of the value. The returned value can
be consumed by a variable (as in the example shown) or by a control structure, mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Queue Errors: -13 = Overflow error—result too large.

See Also: Hyperbolic Sine (page H-2), Hyperbolic Tangent (page H-3)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable

Hyperbolic Cosine
Of 2.0 Float Literal

Put Result in ANSWER Float Variable
ioControl Command Reference H-1

Hyperbolic Sine
Mathematical Action

Function: To derive the hyperbolic sine of a value.

Typical Use: To solve hyperbolic calculations.

Details: Calculates the hyperbolic sine of Argument 1 and places the result in Argument 2.

Arguments:

Standard
Example:

OptoScript
Example:

HyperbolicSine(Of)
ANSWER = HyperbolicSine(2.0);

This is a function command; it returns the hyperbolic sine of the value. The returned value can be
consumed by a variable (as in the example shown) or by a control structure, mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Queue Errors: -13 = Overflow error—result too large.

See Also: Hyperbolic Cosine (page H-1), Hyperbolic Tangent (page H-3)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable

Hyperbolic Sine
Of 2.0 Float Literal

Put Result in ANSWER Float Variable
H-2 ioControl Command Reference

H

Hyperbolic Tangent
Mathematical Action

Function: To derive the hyperbolic tangent of a value.

Typical Use: To solve hyperbolic calculations.

Details: • Calculates the hyperbolic tangent of Argument 1 and places the result in Argument 2.
• The result is a value ranging from -1.0 to 1.0.

Arguments:

Standard
Example:

OptoScript
Example:

HyperbolicTangent(Of)
ANSWER = HyperbolicTangent(2.0);

This is a function command; it returns the hyperbolic tangent of the value. The returned value can
be consumed by a variable (as in the example shown) or by a control structure, mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Queue Errors: -13 = Overflow error—result too large.

See Also: Hyperbolic Cosine (page H-1), Hyperbolic Sine (page H-2)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable

Hyperbolic Tangent
Of 2.0 Float Literal

Put Result in ANSWER Float Variable
ioControl Command Reference H-3

H-4 ioControl Command Reference

I
 I
Increment Variable
Mathematical Action

Function: To increase the value specified by 1.

Typical Use: To control loop counters and other counting applications.

Details: Same as adding 1: 8 becomes 9, -1 becomes 0, 12.33 becomes 13.33, etc.

Arguments:

Standard
Example:

OptoScript
Example:

IncrementVariable(Variable)
IncrementVariable(LOOP_COUNTER);

This is a procedure command; it does not return a value.

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• Executes faster than adding 1.

See Also: Decrement Variable (page D-1)

Argument 1
[Value]
Float Variable
Integer 32 Variable
Integer 64 Variable

Increment Variable
LOOP_COUNTER Integer 32 Variable
ioControl Command Reference I-1

I/O Point Communication Enabled?
Simulation Condition

Function: Checks a flag internal to the control engine to determine if communication to the specified I/O
point is enabled.

Typical Use: Primarily used in factory QA testing and simulation.

Details: Evaluates True if communication is enabled.

Arguments:

Standard
Example:

OptoScript
Example:

IsIoPointCommEnabled(I/O Point)
if (IsIoPointCommEnabled(PUMP_3_STATUS)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

See Also: Enable Communication to Point (page E-7), Disable Communication to Point (page D-11), I/O Unit
Communication Enabled? (page I-3)

Argument 1
I/O Point
Analog Input
Analog Output
Digital Input
Digital Output

I/O Point PUMP_3_STATUS Analog Input
I/O Point Communication Enabled?
I-2 ioControl Command Reference

I

I/O Unit Communication Enabled?
Simulation Condition

Function: Checks a flag internal to the control engine to determine if communication to the specified I/O
unit is enabled.

Typical Use: Primarily used in factory QA testing and simulation, and in error handling charts.

Details: Evaluates True if communication is enabled.

Arguments:

Standard
Example:

OptoScript
Example:

IsIoUnitCommEnabled(I/O Unit)
if (IsIoUnitCommEnabled(PUMP_HOUSE)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

See Also: Enable Communication to I/O Unit (page E-4), Disable Communication to I/O Unit (page D-7), I/O
Point Communication Enabled? (page I-2), I/O Unit Ready? (page I-4)

Argument 1
I/O Unit
B100*
B200*
B3000 (Analog)*
B3000 (Digital)*
G4A8R, G4RAX*
G4D16R*
G4D32RS*
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2
SNAP-BRS*

* ioControl Professional only

I/O Unit PUMP_HOUSE SNAP-ENET-D64
I/O Unit Communication Enabled?
ioControl Command Reference I-3

I/O Unit Ready?
I/O Unit Condition

Function: Tests communication with the specified I/O unit.

Typical Use: To determine if the I/O unit is operational and that communication with it is functional.

Details: The control engine tests communication with the I/O unit by reading the I/O unit’s type from the
status read area of the memory map and making sure no error is returned. If communication is
successful (regardless of whether the I/O unit is enabled or disabled), the condition evaluates
True.

Arguments:

Standard
Example:

OptoScript
Example:

IsIoUnitReady(I/O Unit)
if (IsIoUnitReady(PUMP_House)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: Ideal for determining “System Ready” status.

See Also: I/O Point Communication Enabled? (page I-2), I/O Unit Communication Enabled? (page I-3)

Argument 1
Is
B100*
B200*
B3000 (Analog)*
B3000 (Digital)*
G4A8R, G4RAX*
G4D16R*
G4D32RS*
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2
SNAP-BRS*

* ioControl Professional only

Is PUMP_HOUSE SNAP-ENET-D64
I/O Unit Ready?
I-4 ioControl Command Reference

I

IVAL Move Numeric Table to I/O Unit
I/O Unit Action

Function: Writes to the internal value (IVAL) of all analog points on the I/O unit.

Typical Use: Simulation, testing, and certification where communication to the I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows all IVALs to be modified as if they were being changed by
real I/O.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetAnalogFromTable(Start at Index, Of Table, Move to)
IvalSetAnalogFromTable(0, TEST_TABLE, AI_101);

This is a procedure command; it does not return a value.

Notes: Primarily used to write to inputs.

See Also: IVAL Set Analog Point (page I-6), Disable Communication to All I/O Units (page D-5),
Disable Communication to I/O Unit (page D-7)

Argument 1
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table
Integer 32 Table

Argument 3
Move to
B100*
B200*
B3000 (Analog)*
B3000 (Digital)*
G4A8R, G4RAX*
G4D16R*
G4D32RS*
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2
SNAP-BRS*

* ioControl Professional only

IVAL Set Analog from Table
Start at Index 0 Integer 32 Literal

Of Table TEST_TABLE Float Table
Move to AI_101 SNAP-B3000-ENET,

SNAP-ENET-RTC
ioControl Command Reference I-5

IVAL Set Analog Point
Simulation Action

Function: Writes to the internal value (IVAL) of an analog input or output.

Typical Use: Simulation, testing, and certification where communication to the I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetAnalogPoint(To, On Point)
IvalSetAnalogPoint(5.63, PROCESS_PH);

This is a procedure command; it does not return a value.

Notes: Primarily used to write to inputs. May be used to test when an output is updated by a change of
value.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Analog Input
Analog Output

VAL Set Analog Point
To 5.63 Float Literal

On Point PROCESS_PH Analog Input
I-6 ioControl Command Reference

I

IVAL Set Counter
Simulation Action

Function: Writes to the internal value (IVAL) of a counter or quadrature counter digital input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: • The program will use IVALs exclusively when communication to the specified point or I/O
unit is disabled. This command allows the IVAL to be modified as if it were being changed by
real I/O.

• Valid range for quadrature counters is 0 to 2,147,483,647.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetCounter(To, On Point)
IvalSetCounter(2484, PROCESS_FLOW_TOTAL);

This is a procedure command; it does not return a value.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Argument 1
To
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Counter
Quadrature Counter

IVAL Set Counter
To 2484 Integer 32 Literal

On Point PROCESS_FLOW_TOTAL Counter
ioControl Command Reference I-7

IVAL Set Digital Binary
Deprecated

NOTE: This command has been deprecated. It is still functional, however if you are developing a
new strategy, use IVAL Set I/O Unit from MOMO Masks (page I-11) instead.

Function: Writes to the internal value (IVAL) of all 16 digital outputs on the specified I/O unit.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified I/O unit is disabled.
This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetDigitalBinary(On Mask, Off Mask, On I/O Unit)
Ival SetDigitalBinary(PUMPS_ON_MASK, 0, PUMP_CTRL);

This is a procedure command; it does not return a value.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Argument 1
On Mask
Integer 32 Literal
Integer 32 Variable

Argument 2
Off Mask
Integer 32 Literal
Integer 32 Variable

Argument 3
On I/O Unit
B100
B3000 (Digital)
B3000 SNAP Mixed I/O
G4 Digital Local Simple I/O Unit
G4D16R
G4D32RS
SNAP-BRS

IVAL Set Digital Binary
On Mask PUMPS_ON_MASK Integer 32 Variable
Off Mask 0 Integer 32 Literal

On I/O Unit PUMP_CTRL B3000 (Digital)
I-8 ioControl Command Reference

I

IVAL Set Digital-64 I/O Unit from MOMO Masks
Deprecated

NOTE: This command has been deprecated. It is still functional, however if you are developing a
new strategy, use IVAL Set I/O Unit from MOMO Masks (page I-11) instead.

Function: Writes to the internal values (IVALs) of all points on a digital 64 I/O unit.

Typical Use: For simulation and testing, to assign specific values from a must-on, must-off mask to points.

Details: • The program will use IVALs exclusively when communication to the I/O unit is disabled. This
command allows the IVALs to be modified as if they were being changed by real I/O.

• This command is 64 times faster than using Turn On or Turn Off 64 times. It updates the
IVALs for all 64 points. It affects only selected output points and does not affect input points.

• To turn on a point, set the respective bit in the 64-bit data field of argument 1 (the must-on
bit mask) to a value of “1.”To turn off a point, set the respective bit in the 64-bit data field of
argument 2 (the must-off bit mask) to a value of “1.” To leave a point unaffected, set its bits
to a value of 0 in both arguments 1 and 2.

• The least significant bit corresponds to point zero.
• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.

Arguments:

Standard
Example:

The effect of this command is illustrated below:

To save space, the example shows only the first eight points and the last eight points on the rack.
For the points shown, points 58, 57, 7, 6, and 1 will be turned on. Points 63, 61, 60, and 5 will be
turned off. Other points shown are not changed.

Argument 1
Must-on Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
Must-off Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
Digital 64 I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64

IVAL Set Digital-64 I/O Unit from MOMO Masks
Must On Mask 0x060003C0000000C2 Integer 64 Literal
Must Off Mask 0xB0F240010308A020 Integer 64 Literal

Digital-64 I/O Unit PUMP_CTRL_UNIT SNAP-UP1-D64

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2

Must-off
Bit Mask

Binary 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

Hex B 0 2 0
ioControl Command Reference I-9

OptoScript
Example:

IvalSetDigital64IoUnitFromMomo(Must-On Mask, Must-Off Mask, Digital-64 I/O
Unit)
IvalSetDigital64IoUnitFromMomo(0x060003C0000000C2i64,

0xB0F240010308A020i64, PUMP_CTRL_UNIT);

This is a procedure command; it does not return a value. (Note that Integer 64 literals in
OptoScript code take an i64 suffix.)

Notes: Primarily used to write to inputs.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit
(page D-7), IVAL Set Mixed I/O Unit from MOMO Masks (page I-16), IVAL Set Mixed 64 I/O Unit
from MOMO Masks (page I-15)

IVAL Set Frequency
Simulation Action

NOTE: This command is for mistic I/O units only.

Function: Writes to the internal value (IVAL) of a digital frequency input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetFrequency(To, On Point)
IvalSetFrequency(400, Process_Flow_Rate);

This is a procedure command; it does not return a value.

Notes: Valid range is 0–65535.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Argument 1
To
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Frequency

IVAL Set Frequency
To 400 Integer 32 Literal

On Point Process_Flow_Rate Frequency
I-10 ioControl Command Reference

I

IVAL Set I/O Unit from MOMO Masks
Simulation Action

Function: Writes to the internal value (IVAL) of all digital outputs on the specified I/O unit.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: • The program will use IVALs exclusively when communication to the specified I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real
I/O.

• This command updates the IVALs for all selected output points. It does not affect input
points.

• To turn on a point, set the respective bit in the data field of argument 1 (the must-on bit
mask) to a value of “1.”To turn off a point, set the respective bit in the data field of argument
2 (the must-off bit mask) to a value of “1.” To leave a point unaffected, set its bits to a value
of 0 in both arguments 1 and 2.

• The least significant bit corresponds to point zero.
• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.

Arguments:

Standard
Example:

The effect of this command is illustrated below::

Argument 1
On Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
Off Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
On I/O Unit
B100
B3000 (Digital)
B3000 SNAP Mixed I/O
G4 Digital Local Simple I/O Unit
G4D16R
G4D32RS
SNAP-BRS
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2
SNAP-UP1-ADS
SNAP-UP1-M64

IVAL Set I/O Unit from MOMO Masks
On Mask 0x060003C0000000C2 Integer 64 Literal
Off Mask 0xB0F240010308A020 Integer 64 Literal

On I/O Unit PUMP_CTRL_UNIT SNAP-UP1-M64

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2
ioControl Command Reference I-11

To save space, the example shows only the first eight points and the last eight points on the rack.
For the points shown, points 58, 57, 7, 6, and 1 will be turned on. Points 63, 61, 60, and 5 will be
turned off. Other points shown are not changed.

OptoScript
Example:

IvalSetiOUnitfromMOMO(On Mask, Off Mask, On I/O Unit)
IvalSetiOUnitfromMOMO(0x060003C0000000C2i64, 0xB0F240010308A020i64,
PUMP_CTRL_UNIT);

This is a procedure command; it does not return a value.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Must-off
Bit Mask

Binary 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

Hex B 0 2 0
I-12 ioControl Command Reference

I

IVAL Set Mistic PID Control Word
Simulation Action

Function: Writes to the internal value (IVAL) of the bits that represent the PID configuration.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: Bit assignments:

To set any bit(s) put a 1 for each bit to set in the MOMO On parameter. To clear any bit(s) put
a 1 for each bit to clear in the MOMO Off parameter. All MOMO bit positions with zeros will leave
the corresponding PID control word bit unchanged.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetMisticPidControlWord(On Mask, Off Mask, For PID Loop)
IvalSetMisticPidControlWord(PID_CTRL_SET, PID_CTRL_CLEAR,
EXTRUDER_ZONE08);

This is a procedure command; it does not return a value.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

11 1 = Use SqRt value from input channel.
10 1 = Setpoint was above high clamp. Write zero to clear.
9 1 = Setpoint was below low clamp. Write zero to clear.
8 1 = Input channel under-range. Write zero to clear.
7 1 = Loop active. 0 = Loop stopped.
6 1 = Loop in auto mode. 0 = Loop in manual mode.
5 1 = Output active. 0 = Output disconnected.
4 1 = Output tracks input in manual mode. 0 = no action.
3 1 = Setpoint tracks input in manual mode. 0 = no action.
2 1 = Input from host. 0 = Input from channel.
1 1 = Setpoint from channel. 0 = Setpoint from host.
0 1 = Use filtered value from input channel. Must have filtering

active on the input channel.
0 = Use current value of input channel.

Argument 1
On Mask
Integer 32 Literal
Integer 32 Variable

Argument 2
Off Mask
Integer 32 Literal
Integer 32 Variable

Argument 3
For PID Loop
PID Loop

IVAL Set Mistic PID Control Word
On Mask PID_CTRL_SET Integer 32 Variable
Off Mask PID_CTRL_CLEAR Integer 32 Variable

For PID Loop EXTRUDER_ZONE08 PID Loop
ioControl Command Reference I-13

IVAL Set Mistic PID Process Term
Simulation Action

Function: Writes to the internal value (IVAL) of a PID input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetMisticPidProcessTerm(To, On PID Loop)
IvalSetMisticPidProcessTerm(1500, Influent_Flow_Controller);

This is a procedure command; it does not return a value.

Notes: Valid range is equal to the scaling of the PID input channel.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On PID Loop
PID Loop

IVAL Set Mistic PID Process Term
To 1500 Integer 32 Literal

On PID Loop Influent_Flow_Controller PID Loop
I-14 ioControl Command Reference

I

IVAL Set Mixed 64 I/O Unit from MOMO Masks
Deprecated

NOTE: This command has been deprecated. It is still functional, however if you are developing a
new strategy, use IVAL Set I/O Unit from MOMO Masks (page I-11) instead.

Function: Writes to the internal values (IVALs) of all digital points on a mixed 64 I/O unit (an I/O unit with
a SNAP-UP1-M64 brain).

Typical Use: For simulation and testing, to assign specific values from a must-on, must-off mask to digital
points.

Details: • The program will use IVALs exclusively when communication to the I/O unit is disabled. This
command allows the IVALs to be modified as if they were being changed by real I/O.

• This command is 64 times faster than using Turn On or Turn Off 64 times. It updates the
IVALs for all 64 points. It affects only selected output points and does not affect input points.

• To turn on a point, set the respective bit in the 64-bit data field of argument 1 (the must-on
bit mask) to a value of “1.”To turn off a point, set the respective bit in the 64-bit data field of
argument 2 (the must-off bit mask) to a value of “1.” To leave a point unaffected, set its bits
to a value of 0 in both arguments 1 and 2.

• The least significant bit corresponds to point zero.
• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.

Arguments:

Standard
Example:

The effect of this command is illustrated below:

To save space, the example shows only the first eight points and the last eight points on the rack.
For the points shown, points 58, 57, 7, 6, and 1 will be turned on. Points 63, 61, 60, and 5 will be
turned off. Other points shown are not changed.

Argument 1
Must-on Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
Must-off Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
Mixed 64 I/O Unit
SNAP-UP1-M64

IVAL Set Mixed 64 I/O Unit from MOMO Masks
Must On Mask 0x060003C0000000C2 Integer 64 Literal
Must Off Mask 0xB0F240010308A020 Integer 64 Literal

Mixed 64 I/O Unit PUMP_CTRL_UNIT SNAP-UP1-M64

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2

Must-off
Bit Mask

Binary 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

Hex B 0 2 0
ioControl Command Reference I-15

OptoScript
Example:

IvalSetMixed64IoUnitFromMomo(Must-On Mask, Must-Off Mask, Mixed 64 I/O
Unit)
IvalSetMixed64IoUnitFromMomo(0x060003C0000000C2i64,

0xB0F240010308A020i64, PUMP_CTRL_UNIT);

This is a procedure command; it does not return a value. (Note that Integer 64 literals in
OptoScript code take an i64 suffix.)

Notes: Primarily used to write to inputs.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit
(page D-7), IVAL Set Mixed I/O Unit from MOMO Masks (page I-16), IVAL Set Digital-64 I/O Unit
from MOMO Masks (page I-9)

IVAL Set Mixed I/O Unit from MOMO Masks
Deprecated

NOTE: This command has been deprecated. It is still functional, however if you are developing a
new strategy, use IVAL Set I/O Unit from MOMO Masks (page I-11) instead.

Function: Writes to the internal values (IVALs) of all digital points on a mixed I/O unit.

Typical Use: For simulation and testing, to assign specific values from a must-on, must-off mask to digital
points.

Details: • The program will use IVALs exclusively when communication to the I/O unit is disabled. This
command allows the IVALs to be modified as if they were being changed by real I/O.

• This command is 64 times faster than using Turn On or Turn Off 64 times. It updates the
IVALs for all 64 points. It affects only selected output points and does not affect input points.

• To turn on a point, set the respective bit in the 64-bit data field of argument 1 (the must-on
bit mask) to a value of “1.”To turn off a point, set the respective bit in the 64-bit data field of
argument 2 (the must-off bit mask) to a value of “1.” To leave a point unaffected, set its bits
to a value of 0 in both arguments 1 and 2.

• The least significant bit corresponds to point zero.
• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.

Arguments:

Standard
Example:

Argument 1
Must-on Mask
Integer 32 Literal
Integer 32 Variable

Argument 2
Must-off Mask
Integer 32 Literal
Integer 32 Variable

Argument 3
Mixed I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS

IVAL Set Mixed I/O Unit from MOMO Masks
Must On Mask 0x0600C0C2 Integer 32 Variable
Must Off Mask 0xB001A020 Integer 32 Literal
Mixed I/O Unit PUMP_CTRL_UNIT SNAP-UP1-ADS
I-16 ioControl Command Reference

I

The effect of this command is illustrated below:

To save space, the example shows only the first eight and the last eight digital points on the rack.
For the points shown, points 26, 25, 7, 6, and 1 will be turned on. Points 31, 29, 28, and 5 will be
turned off. Other points shown are not changed.

OptoScript
Example:

IvalSetMixedIoUnitFromMomo(Must-On Mask, Must-Off Mask, Mixed I/O Unit)
IvalSetMixedIoUnitFromMomo(PUMPS_ON_MASK, 0xB001A020, PUMP_CTRL_UNIT);

This is a procedure command; it does not return a value.

Notes: Primarily used to write to inputs.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit
(page D-7), IVAL Set Digital-64 I/O Unit from MOMO Masks (page I-9), IVAL Set Mixed 64 I/O Unit
from MOMO Masks (page I-15)

Point Number 31 30 29 28 27 26 25 24 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2

Must-off
Bit Mask

Binary 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

Hex B 0 2 0
ioControl Command Reference I-17

IVAL Set Off-Latch
Simulation Action

Function: Writes to the internal value (IVAL) of a digital latch input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: • The program will use IVALs exclusively when communication to the specified point or I/O
unit is disabled. This command allows the IVAL to be modified as if it were being changed by
real I/O.

• Any non-zero value sets the latch; zero clears the latch.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetOffLatch(To, On Point)
IvalSetOffLatch(-1, Process_Stop_Button);

This is a procedure command; it does not return a value.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Argument 1
To
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Digital Input

IVAL Set Off-Latch
To -1 Integer 32 Literal

On Point Process_Stop_Button Digital Input
I-18 ioControl Command Reference

I

IVAL Set Off-Pulse
Simulation Action

Function: Writes to the internal value (IVAL) of a digital pulse input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: • The program will use IVALs exclusively when communication to the specified point or I/O
unit is disabled. This command allows the IVAL to be modified as if it were being changed by
real I/O.

• This command applies to SNAP-UP1-ADS and SNAP-B3000-ENET I/O units as well as to
mistic I/O units.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetOffPulse(To, On Point)
IvalSetOffPulse(150000, TIME_PULSE_INPUT);

This is a procedure command; it does not return a value.

Notes: Valid range is 0–2 billion in units of 100 microseconds.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Off Pulse

IVAL Set Off-Pulse
To 150000 Integer 32 Literal

On Point TIME_PULSE_INPUT Off Pulse
ioControl Command Reference I-19

IVAL Set Off-Totalizer
Simulation Action

NOTE: This command is for mistic I/O units only.

Function: Writes to the internal value (IVAL) of a digital totalizer input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetOffTotalizer(To, On Point)
IvalSetOffTotalizer(36000000, PUMP_OFF_TIME);

This is a procedure command; it does not return a value.

Notes: Valid range is 0–2 billion in units of 100 microseconds.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Off Totalizer

IVAL Set Off-Totalizer
To 36000000 Integer 32 Literal

On Point PUMP_OFF_TIME Totalizer Off
I-20 ioControl Command Reference

I

IVAL Set On-Latch
Simulation Action

Function: Writes to the internal value (IVAL) of a digital latch input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: • The program will use IVALs exclusively when communication to the specified point or I/O
unit is disabled. This command allows the IVAL to be modified as if it were being changed by
real I/O.

• Any non-zero value sets the latch; zero clears the latch.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetOnLatch(To, On Point)
IvalSetOnLatch(0, Process_Start_Button);

This is a procedure command; it does not return a value.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Argument 1
To
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Digital Input

IVAL Set On-Latch
To 0 Integer 32 Literal

On Point Process_Start_Button Digital Input
ioControl Command Reference I-21

IVAL Set On-Pulse
Simulation Action

Function: Writes to the internal value (IVAL) of a digital pulse input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetOnPulse(To, On Point)
IvalSetOnPulse(133300, TIME_PULSE_INPUT);

This is a procedure command; it does not return a value.

Notes: Valid range is 0–2 billion in units of 100 microseconds.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
On Pulse

IVAL Set On-Pulse
To 133300 Integer 32 Literal

On Point TIME_PULSE_INPUT On Pulse
I-22 ioControl Command Reference

I

IVAL Set On-Totalizer
Simulation Action

NOTE: This command is for mistic I/O units only.

Function: Writes to the internal value (IVAL) of a digital totalizer input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetOnTotalizer(To, On Point)
IvalSetOnTotalizer(72000000, PUMP_ON_TIME);

This is a procedure command; it does not return a value.

Notes: Valid range is 0–2 billion in units of 100 microseconds.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
On Totalizer

IVAL Set On-Totalizer
To 72000000 Integer 32 Literal

On Point PUMP_ON_TIME On Totalizer
ioControl Command Reference I-23

IVAL Set Period
Simulation Action

NOTE: This command is for mistic I/O units only.

Function: Writes to the internal value (IVAL) of a digital input configured to measure a time period.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetPeriod(To, On Point)
IvalSetPeriod(5.63, Pump_On_Time);

This is a procedure command; it does not return a value.

Notes: Value to write is in seconds.

See Also: Get Period (page G-110), Disable Communication to All I/O Units (page D-5), Disable
Communication to I/O Unit (page D-7)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Period

IVAL Set Period
To 5.63 Float Literal

On Point Pump_On_Time Period
I-24 ioControl Command Reference

I

IVAL Set Simple 64 I/O Unit from MOMO Masks
Deprecated

NOTE: This command has been deprecated. It is still functional, however if you are developing a
new strategy, use IVAL Set I/O Unit from MOMO Masks (page I-11) instead.

Function: Writes to the internal values (IVALs) of all digital points on a SNAP Simple 64-point I/O unit (an
I/O unit with a SNAP-ENET-S64 brain).

Typical Use: For simulation and testing, to assign specific values from a must-on, must-off mask to digital
points.

Details: • The program will use IVALs exclusively when communication to the I/O unit is disabled. This
command allows the IVALs to be modified as if they were being changed by real I/O.

• This command is 64 times faster than using Turn On or Turn Off 64 times. It updates the
IVALs for all 64 points. It affects only selected output points and does not affect input points.

• To turn on a point, set the respective bit in the 64-bit data field of argument 1 (the must-on
bit mask) to a value of “1.”To turn off a point, set the respective bit in the 64-bit data field of
argument 2 (the must-off bit mask) to a value of “1.” To leave a point unaffected, set its bits
to a value of 0 in both arguments 1 and 2.

• The least significant bit corresponds to point zero.
• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.

Arguments:

Standard
Example:

The effect of this command is illustrated below:

To save space, the example shows only the first eight points and the last eight points on the rack.
For the points shown, points 58, 57, 7, 6, and 1 will be turned on. Points 63, 61, 60, and 5 will be
turned off. Other points shown are not changed.

Argument 1
Must-on Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
Must-off Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
Simple 64 I/O Unit
SNAP-ENET-S64

IVAL Set Simple 64 I/O Unit from MOMO Masks
Must On Mask 0x060003C0000000C2 Integer 64 Literal
Must Off Mask 0xB0F240010308A020 Integer 64 Literal

Simple 64 I/O Unit PUMP_CTRL_UNIT SNAP-ENET-S64

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2

Must-off
Bit Mask

Binary 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

Hex B 0 2 0
ioControl Command Reference I-25

OptoScript
Example:

IvalSetSimple64IoUnitFromMomo(Must-On Mask, Must-Off Mask, Simple 64 I/O
Unit)
IvalSetSimple64IoUnitFromMomo(0x060003C0000000C2i64,

0xB0F240010308A020i64, PUMP_CTRL_UNIT);

This is a procedure command; it does not return a value. (Note that Integer 64 literals in
OptoScript code take an i64 suffix.)

Notes: Primarily used to write to inputs.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit
(page D-7), IVAL Set Digital-64 I/O Unit from MOMO Masks (page I-9), IVAL Set Mixed 64 I/O Unit
from MOMO Masks (page I-15)

IVAL Set TPO Percent
Simulation Action

Function: Writes to the internal value (IVAL) of a digital TPO output.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetTpoPercent(To, On Point)
IvalSetTpoPercent(43.66, ZONE_3_HEATER);

This is a procedure command; it does not return a value.

Notes: Valid range is 0.0 to 100.0.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
TPO

IVAL Set TPO Percent
To 43.66 Float Literal

On Point ZONE_3_HEATER TPO
I-26 ioControl Command Reference

I

IVAL Set TPO Period
Simulation Action

Function: Writes to the internal value (IVAL) of a digital TPO period.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

OptoScript
Example:

IvalSetTpoPeriod(Value, On Point)
IvalSetTpoPeriod(1.00, ZONE_3_HEATER);

This is a procedure command; it does not return a value.

Notes: Valid range is 0.1 to 429,496.7 seconds with resolution to 100 microseconds.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Argument 1
Value
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
To
TPO

IVAL Set TPO Period
Value 1.00 Float Literal

To ZONE_3_HEATER TPO
ioControl Command Reference I-27

IVAL Turn Off
Simulation Action

Function: Writes to the internal value (IVAL) of a digital input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

OptoScript
Example:

IvalTurnOff(Point)
IvalTurnOff(Process_Start_Button);

This is a procedure command; it does not return a value.

Notes: Turns Off the IVAL for the specified point.

See Also: Disable Communication to All I/O Units (page D-5), Disable Communication to I/O Unit (page D-7)

Argument 1
[Value]
Digital Input
Digital Output

IVAL Turn Off
Process_Start_Button Digital Input
I-28 ioControl Command Reference

I

IVAL Turn On
Simulation Action

Function: Writes to the internal value (IVAL) of a digital input.

Typical Use: Simulation, testing, and certification where either there are no I/O units or communication to the
I/O units is disabled.

Details: The program will use IVALs exclusively when communication to the specified point or I/O unit is
disabled. This command allows the IVAL to be modified as if it were being changed by real I/O.

Arguments:

Standard
Example:

OptoScript
Example:

IvalTurnOn(Point)
IvalTurnOn(Process_Start_Button);

This is a procedure command; it does not return a value.

Notes: Turns On the IVAL for the specified point.

Argument 1
[Value]
Digital Input
Digital Output

IVAL Turn On
PROCESS_START_BUTTON Digital Input
ioControl Command Reference I-29

I-30 ioControl Command Reference

L
 L
Less?
Logical Condition

Function: To determine if one numeric value is less than another.

Typical Use: To determine if a value is too low.

Details: • Determines if Argument 1 is less than Argument 2. Examples:

• Evaluates True if the first value is less than the second, False otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the < operator.
if (TANK_LEVEL < FILL_SETPOINT) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. The example shown is
only one of many ways to use the < operator. For more information on comparison
operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• Use Within Limits? to test for an approximate match.
• To test for greater than or equal to, use either Greater Than or Equal? or the False exit.

See Also: Greater? (page G-146) Not Equal? (page N-4) Equal? (page E-16) Greater Than or Equal?
(page G-148)

Argument 1 Argument 2 Result
0 0 False
-1 0 True
-1 -3 False

22.221 22.220 False

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
Than
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Is TANK_LEVEL Analog Input
Less?

Than FILL_SETPOINT Float Variable
ioControl Command Reference L-1

Less Than Numeric Table Element?
Logical Condition

Function: To determine if a numeric value is less than a specified value in a float or integer table.

Typical Use: To store low values.

Details: • Determines if one value (Argument 1) is less than another (a value at index Argument 2 in
float or integer table Argument 3). Examples:

• Evaluates True if the first value is less than the second, False otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the < operator.
if (THIS_READING < TABLE_OF_READINGS[TABLE_INDEX]) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. The example shown is
only one of many ways to use the < operator. For more information on comparison
operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• To test for greater than or equal to, use either Greater Than or Equal to Table Element? or the
False exit.

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to table size.

See Also: Greater Than or Equal To Numeric Table Element? (page G-149)

Value 1 Value 2 Result
0.0 0.0 False

0.0001 0.0 False
-98.766 -98.765 True
-32768 -32767 True
22221 2222 False

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
At Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Is THIS_READING Float Variable
Less Than Numeric Table Element?

At Index TABLE_INDEX Integer 32 Variable
Of Table TABLE_OF_READINGS Float Table
L-2 ioControl Command Reference

L

Less Than or Equal?
Logical Condition

Function: To determine if one numeric value is less than or equal to another.

Typical Use: To determine if a value is too low.

Details: • Determines if Argument 1 is less than or equal to Argument 2. Examples:

• Evaluates True if the first value is less than or equal to the second, False otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the <= operator.
if (TEMPERATURE <= 98.60) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. The example shown is
only one of many ways to use the <= operator. For more information on comparison
operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• Use Within Limits? to test for an approximate match.
• To test for greater than, use either the Greater? condition or the False exit.

See Also: Greater? (page G-146), Not Equal? (page N-4), Greater Than or Equal? (page G-148)

Argument 1 Argument 2 Result
0 0 True
-1 0 True
-1 -3 False

22.221 22.220 False

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
To
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Is TEMPERATURE Float Variable
Less Than or Equal?

To 98.60 Float Literal
ioControl Command Reference L-3

Less Than or Equal to Numeric Table Element?
Logical Condition

Function: To determine if a numeric value is less than or equal to a specified value in a float or integer table.

Typical Use: To store low values.

Details: • Determines if one value (Argument 1) is less than or equal to another (a value at index
Argument 2 in float or integer table Argument 3). Examples:

• Evaluates True if the first value is less than or equal to the second, False otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the <= operator.
if (THIS_READING <= TABLE_OF_READINGS[TABLE_INDEX]) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. The example shown is
only one of many ways to use the <= operator. For more information on comparison
operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• To test for greater than, use either Greater Than Table Element? or the False exit.

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to the table size.

See Also: Greater Than Numeric Table Element? (page G-147) Not Equal to Numeric Table Element?
(page N-5) Equal to Numeric Table Element? (page E-17) Greater Than or Equal To Numeric Table
Element? (page G-149)

Value 1 Value 2 Result
0.0 0.0 True

0.0001 0.0 False
22.22 22.222 True

-32768 -32767 True
22221 2222 False

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
At Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Is THIS_READING Float Variable
Less Than or Equal to Numeric Table Element?

At Index TABLE_INDEX Integer 32 Variable
Of Table TABLE_OF_READINGS Float Table
L-4 ioControl Command Reference

L

Listen for Incoming Communication
Communication Action

Function: In TCP/IP communication, to start listening for incoming open communication requests. (In this
case the control engine acts as the slave, and the session is opened by the master.)

Typical Use: To listen for an incoming request to open communication.

Details: • Applies to communication via TCP communication handles only.
• When configuring the communication handle, be careful to choose a port that is not used by

other, unrelated devices on the network.

Arguments:

Standard
Example:

OptoScript
Example:

ListenForIncomingCommunication(Communication Handle)
STATUS = ListenForIncomingCommunication(Ultimate_A);

This is a procedure command; it returns one of the status codes listed below. The returned value
can be consumed by a variable (as in the example shown) or by a control structure, mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Communication Commands” in Chapter 10 of the ioControl User’s Guide.
• After using this command, use Accept Incoming Communication to complete the connection.
• It is only necessary to use this command once per port, even if you use the Accept command

several times.
• To determine whether the connection is still open, use Get Number of Characters Waiting or

Communication Open?
• Using TCP, this command will return a true (non-zero) if there are still characters to be

received, even if the other side has closed. This situation is called a “half open” connection.
Make sure the characters are received so that sessions aren’t used up by a half-open state.

• If you use this command repeatedly with a different port number, eventually the command
will return an error. The maximum successful calls to the command and error number
returned vary based on the firmware and user application as far as the number of Ethernet
communication handles already in use.

• In currently available firmware for SNAP-UP1-ADS, SNAP-UP1-M64, SNAP-UP1-S64, and
SNAP-LCE, the maximum is 64 with error -49.

• The SNAP-PAC-S1 can open up to about 100 listening sessions and the SNAP-PAC-R1 about
75. Both will then return -438. The number of sessions is subject to available memory.

• Keep in mind system resources are shared by both listening sessions and active open
sessions.

Argument 1
Communication Handle
Communication Handle

Argument 2
Put Status In
Integer 32 Variable

Listen for Incoming Communication
Communication Handle Ultimate_A Communication Handle

Put Status In STATUS Integer 32 Variable
ioControl Command Reference L-5

Status Codes: 0 = Success
-10 = Invalid port.
-36 = Invalid command. Use this command only with a TCP communication handle; for other
communication handles, use Open Outgoing Communication instead.
-47 = Open failed. Handle has already been opened.
-49 = No more connections are available. Maximum number of connections already in use.
-203 = Driver not found.
-438 = Could not create socket

See Also: Accept Incoming Communication (page A-2), Get Number of Characters Waiting (page G-101),
Communication Open? (page C-32) Open Outgoing Communication (page O-4)
L-6 ioControl Command Reference

L

Load Files From Permanent Storage
Control Engine Action

Function: To read the files in flash memory and store them to its file system in RAM, thereby replacing files
previously in the root directory of the file system.

Typical Use: To retrieve files previously saved into flash memory.

Details: • Copies all files currently in flash memory to its file system in RAM. Replaces all files in the
root directory of the file system. Folders in the root directory and files within folders are not
replaced.

• This command does not affect point and function configurations, the ioControl strategy, or
the brain’s or controller’s memory map.

• To determine what files are in flash memory and in RAM, use ioManager. Follow the
instructions in Opto 22 form #1440, the ioManager’s User’s Guide.

Arguments:

Standard
Example:

OptoScript
Example:

LoadFilesFromPermanentStorage()
STATUS = LoadFilesFromPermanentStorage();

This is a function command; it returns a zero (indicating success) or an error (indicating failure).
The returned value can be consumed by a variable (as in the example shown) or by a control
structure, mathematical expression, etc. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: • See “Control Engine Commands” in Chapter 10 of the ioControl User’s Guide.
• The equivalent of this command happens automatically when the controller is turned on.

However, when the controller is turned off or loses power, all files and folders in its file
system are deleted; only the files saved to flash memory can be loaded back into RAM when
the controller is turned on again.

Status Codes: 0 = Success
-408 = Error during file access. No files are currently saved in flash memory.

See Also: Erase Files in Permanent Storage (page E-18), Save Files To Permanent Storage (page S-1)

Argument 1
Put Status In
Integer 32 Variable

Load Files From Permanent Storage
Put Status In STATUS Integer 32 Variable
ioControl Command Reference L-7

L-8 ioControl Command Reference

M
 M
Make Integer 64
Logical Action

Function: To combine two 32-bit integers into a single 64-bit integer.

Typical Use: To put the two halves of a 64-bit integer back together after separating them for faster individual
manipulation.

Details: • Places one 32-bit integer in the upper half of a 64-bit integer and the other 32-bit integer in
the lower half.

• When the integer 64 is made, the least significant bit corresponds to point zero and the most
significant bit corresponds to point 64 on a 64-point digital rack, when Argument 3 is an I/O
unit.

Arguments:

Standard
Example:

OptoScript
Example:

MakeInt64(High Integer, Low Integer)
IN_BD2_STATUS = MakeInt64(IN_BD2_HIGH, IN_BD2_LOW);

This is a function command; it returns the 64-bit integer. The returned value can be consumed by
a variable (as shown) or by another item, such as a mathematical expression or a control
structure. It cannot be consumed by an I/O unit, however. See Chapter 11 of the ioControl User’s
Guide for more information on OptoScript.
Although the returned value cannot be consumed by an I/O unit, you can accomplish the same
thing by using OptoScript code such as the following:
nnTemp1 = MakeInt64(nHiPart, nLoPart);

SetDigital64IoUnitFromMomo(nnTemp1, bitnot nnTemp1, MyDig64);

Notes: This command is useful if you want to get information from a program that doesn’t directly
support 64-bit integers, such as ioDisplay and third-party products, and use that information in a
digital-only SNAP D64 Ultimate or Ethernet I/O unit.

See Also: Get High Bits of Integer 64 (page G-62), Get Low Bits of Integer 64 (page G-85)

Argument 1
High Integer
Integer 32 Literal
Integer 32 Variable

Argument 2
Low Integer
Integer 32 Literal
Integer 32 Variable

Argument 3
Put in
Integer 64 Variable
SNAP-ENET-D64*
SNAP-UP1-D64*
SNAP-UP1-M64*
SNAP-ENET-S64*

* Standard commands only

Make Integer 64
High Integer IN_BD2_HIGH Integer 32 Variable
Low Integer IN_BD2_LOW Integer 32 Variable

Put in IN_BD2_STATUS Integer 64 Variable
ioControl Command Reference M-1

Maximum
Mathematical Action

Function: To select the greater of two values.

Typical Use: To select the higher pressure or temperature reading.

Details: The greater of the two values is selected.

Arguments:

Standard
Example:

OptoScript
Example:

Max(Compare, With)
Highest_Pressure = Max(Pressure_A, Pressure_B);

This is a function command; it returns the greater of the two values. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the ioControl User’s Guide for more information.

See Also: Minimum (page M-3)

Argument 1
Compare
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
Withp
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Maximum in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable

Maximum
Compare Pressure_A Analog Input

With Pressure_B Analog Input
Put Maximum in Highest_Pressure Float Variable
M-2 ioControl Command Reference

M

Minimum
Mathematical Action

Function: To select the lesser of two values.

Typical Use: To select the lower pressure or temperature reading.

Details: The lesser of the two values is selected.

Arguments:

Standard
Example:

OptoScript
Example:

Min(Compare, With)
Lowest_Pressure = Min(Pressure_A, Pressure_B);

This is a function command; it returns the lesser value. The returned value can be consumed by
a variable (as shown) or by another item, such as a mathematical expression or a control
structure. See Chapter 11 of the ioControl User’s Guide for more information.

See Also: Maximum (page M-2)

Argument 1
Compare
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
With
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Minimum in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable

Minimum
Compare Pressure_A Analog Input

With Pressure_B Analog Input
Put Minimum in Lowest_Pressure Float Variable
ioControl Command Reference M-3

Mistic PID Loop Communication Enabled?
Simulation Condition

Function: Checks a flag internal to the controller to determine if communication to the specified PID loop
is enabled.

Typical Use: Primarily used in factory QA testing and simulation.

Details: Evaluates True if communication is enabled.

Arguments:

Standard
Example:

Mistic PID Loop Communication Enabled?

OptoScript
Example:

IsMisticPidLoopCommEnabled(PID Loop)
if (IsMisticPidLoopCommEnabled(FACTORY_HEAT_2BA)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

See Also: I/O Point Communication Enabled? (page I-2)

Argument 1
PID Loop
PID Loop

PID Loop FACTORY_HEAT_2BA
M-4 ioControl Command Reference

M

Modulo
Mathematical Action

Function: To generate the remainder resulting from integer division.

Typical Use: To capture the remainder whenever integer modulo calculations are needed.

Details: • Always results in an integer value. Examples: 40 modulo 16 = 8, 8 modulo 8 = 0.
• If any arguments are floats, they are rounded to integers before the division occurs.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the % operator.
Productivity_Remainder = Num_Parts_Produced % Minutes_Elapsed;

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• In OptoScript code, the % operator can be used in several ways. For more information on

mathematical expressions in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

See Also: Divide (page D-20), Multiply (page M-25)

Argument 1
[Value]
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
By
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable

Modulo
Num_Parts_Produced Integer 32 Variable

By Minutes_Elapsed Integer 32 Variable
Put Result in Productivity_Remainder Integer 32 Variable
ioControl Command Reference M-5

Move
Miscellaneous Action

Function: To copy a digital, analog, or numeric value to another location.

Typical Use: To copy values between objects, even if they are dissimilar types.

Details: ioControl automatically converts the type of Argument 1 to match that of Argument 2.
The following rules are employed when copying values between objects of different types:
• From Float to Integer: Floats are rounded up for fractions of 0.5 or greater, otherwise they

are rounded down.
• From Integer to Float: Integer values are converted directly to floats.
• From Digital Input or Output: A value of non-zero is returned for on, 0 for off.
• From Latch: A value of non-zero is returned for set latches, 0 for latches that are not set.
• To Digital Output: A value of 0 turns the output off. Any non-zero value turns the output on.
• To Analog Output: Values are sent as is. Expect some rounding consistent with the analog

resolution of the I/O unit. If the value sent is outside the allowable range for the point, the
output will go to the nearest range limit, either zero or full scale.

• From Integer 32 to Integer 64: Integer values are moved into the high or upper half. For
conversions from integer 32 to integer 64 (or vice versa), use the commands Make Integer
64, Get High Bits of Integer 64, and Get Low Bits of Integer 64.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator.
DIG1_STATUS = DIG1;

Argument 1
From
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
To
Analog Output
Digital Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable

Move
From DIG1 Digital Input

To DIG1_STATUS Integer 32 Variable
M-6 ioControl Command Reference

M

Notes: • In OptoScript code, simply make assignments where you would use the Move command.

• In standard commands, you can use Move with timers as the equivalent of two other
commands (in OptoScript code, the = operator has the same effect):
- With up timers, Move is the same as using Set Up Timer Target Value and Start Timer.

The value moved is the target value, and it overwrites any target value already in place.
The up timer starts immediately from zero.

- With down timers, Move is the same as using Set Down Timer Preset Value and Start
Timer. The value moved is the preset value the timer will start from, and it overwrites any
preset value previously set. The timer starts immediately from the preset value.

Queue Errors: -13 = Overflow error—integer or float value was too large.

See Also: Move String (page M-16), Move to Numeric Table Element (page M-17) and other Move to Table
commands, Move from Numeric Table Element (page M-8) and other Move from Table
commands.

Move 32 Bits
Logical Action

Function: To move the internal bit pattern of an integer 32 into a float, or to move a float into an integer 32.

Typical Use: To help parse or create binary data when communicating with other devices.

Arguments:

Standard
Example:

OptoScript
Example:

Move32Bits(From, To)
Move32Bits(Source_Data, Float);

This is a procedure command; it does not return a value.

Notes: See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.

Argument 1
From
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
To
Float Variable
Integer 32 Variable

Move 32 Bits
From Source_Data Integer 32 Variable

To Float Float Variable
ioControl Command Reference M-7

Move from Numeric Table Element
Miscellaneous Action

Function: To copy one value from either an integer or float table.

Typical Use: To copy a numeric table value to an I/O point or another numeric variable.

Details: • All numeric type conversions are automatically handled according to the rules detailed for
the Move command.

• The valid range for the index is zero to the table length minus 1 (size – 1).

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator.
PRESS_OUT = LOOK_UP_TABLE[0];

Notes: In OptoScript code, simply make an assignment from the table element.

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to the table size.
-13 = Overflow—integer or float value was too large.

See Also: Move Numeric Table Element to Numeric Table (page M-13), Move to Numeric Table Element
(page M-17), Shift Numeric Table Elements (page S-90)

Argument 1
From Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Argument 3
To
Analog Output
Digital Output
Float Variable
Integer 32 Variable
Integer 64 Variable

Move from Numeric Table Element
From Index 0 Integer 32 Literal

Of Table LOOK_UP_TABLE Float Table
To PRESS_OUT Analog Output
M-8 ioControl Command Reference

M

Move from Pointer Table Element
Pointers Action

Function: To move an object from a pointer table to a pointer variable.

Typical Use: To retrieve objects from pointer tables.

Details: This command allows you to retrieve objects from a pointer table and place them into pointer
variables of the same type.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator.
TANK_SWITCH_POINTER = IO_POINTERS[CURRENT_INDEX];

Notes: • In OptoScript code, simply make an assignment from the table element.
• Be sure to move the object from the table into a pointer of the same type. If the types are

different, an error will be posted to the message queue.

Queue Errors: -30 = Pointer was not initialized. Use Move to Pointer Table Element to initialize the table entry.
-69 = Invalid parameter (null pointer) passed to driver.

See Also: Move to Pointer (page M-19), Move to Pointer Table Element (page M-21),

Argument 1
Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Pointer Table

Argument 3
To Pointer
Pointer Variable

Move From Pointer Table Element
Index CURRENT_INDEX Integer 32 Variable

Of Table IO_POINTERS Pointer Table
To Pointer TANK_SWITCH_POINTER Pointer Variable
ioControl Command Reference M-9

Move from String Table Element
String Action

Function: To copy a string from a string table.

Typical Uses: • To create a numeric-to-string lookup table, or to retrieve strings from a table for further
processing.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• Valid range for Index (Argument 1) is zero to the table length minus 1 (size – 1).
• If the string moved from the table is longer than the string variable width (Argument 3), it is

truncated to fit.

Arguments:

Standard
Example:

The following example performs a numeric-to-string-table lookup. Given the numeric value for
the day of week, the command below gets the name of the day of week from a string table.
Use Get Day of Week to get the value to use for From Index.

The results of this command are as follows:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator. Remember that
quotes are required in OptoScript code.
STRING = STRING_TABLE[INDEX];

Argument 1
From Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
String Table

Argument 3
To
String Variable

Move from String Table Element
From Index INDEX Integer 32 Variable

Of Table STRING_TABLE String Table
To STRING String Variable

Index String
0 “SUN”
1 “MON”
2 “TUE”
3 “WED”
4 “THU”
5 “FRI”
6 “SAT”
M-10 ioControl Command Reference

M

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.

• In OptoScript code, simply make an assignment to the string.
• A string table is a good way to correlate a number to a string.
• Use Move to String Table to load the table with data.
• Multiple string tables can be used to create small databases of information. For example,

one string table could contain a product name and another could contain the product ID code
or barcode. It is essential to keep all related information at the same index in each table.

Queue Errors: -12 = Invalid table index—index was negative or greater than or equal to the table size.

See Also: Move to String Table Element (page M-23), String Equal to String Table Element? (page S-104),
Get Substring (page G-139), Get Length of Table (page G-83)
ioControl Command Reference M-11

Move I/O Unit to Numeric Table
I/O Unit Action

Function: To read current on/off status of all digital points and current values of all analog points on an I/O
unit and move the returned values to a numeric table.

Typical Use: To efficiently read all points of data on a single I/O unit with one command.

Details: • This command is much faster than using Move several times.
• Reads both inputs and outputs. Updates the IVALs and XVALs for all points.
• Point zero corresponds to the first specified table element. The command returns status to

the table beginning at the index specified in Argument 2. If there are more points than table
elements from the specified index to the end of the table, no data will be written to the table
and a -12 will be placed in the message queue. For an Ultimate or Ethernet I/O unit, 64 table
elements are required.

• For digital points, if the point is on, there will be a non-zero in the respective table element.
If the point is off, there will be a zero in the respective table element.

• For analog points, the current value of the point in engineering units will appear in the
respective table element.

• Points that are not configured will return a value of 0.0.
• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be read.

Arguments:

Standard
Example:

Argument 1
From
B100*
B200*
B3000 (Analog)*
B3000 (Digital)*
G4A8R, G4RAX*
G4D16R*
G4D32RS*
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2
SNAP-BRS*

* ioControl Professional only

Argument 2
Starting Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table

Move I/O Unit to Numeric Table
From UNIT_255 SNAP-UP1-ADS

Starting Index 0 Integer 32 Literal
Of Table DATA_TABLE Float Table
M-12 ioControl Command Reference

M

OptoScript

Example:
MoveIoUnitToNumTable(I/O Unit, Starting Index, Of Table)
MoveIoUnitToNumTable(UNIT_255, 0, DATA_TABLE);

This is a procedure command; it does not return a value.

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to the table size.

See Also: Move Numeric Table to I/O Unit (page M-14)

Move Numeric Table Element to Numeric Table
Miscellaneous Action

Function: To copy a single value from one table to another or from one table element to another table
element within the same table.

Typical Use: To reorder the way data are arranged or to copy temporary values to a final location.

Details: • The two tables can be the same table, different types, or the same type.
• Any value sent to an invalid index is discarded, and an error -12 is added to the message

queue.
• The valid range for each index is zero to the table length minus 1 (size – 1).

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator.
I/O_STATUS_TABLE[27] = I/O_STATUS_TABLE[17];

Notes: • In OptoScript code, simply make an assignment to the table element.
• To move several values, put this command in a loop using variables for both indexes.

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to the table size.
-13 = Overflow—integer or float value was too large.

See Also: Move to Numeric Table Element (page M-17)

Argument 1
From Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Argument 3
To Index
Integer 32 Literal
Integer 32 Variable

Argument 4
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Move Numeric Table Element to Numeric Table
From Index 17 Integer 32 Literal

Of Table I/O_STATUS_TABLE Integer 32 Table
To Index 27 Integer 32 Literal
Of Table I/O_STATUS_TABLE Integer 32 Table
ioControl Command Reference M-13

Move Numeric Table to I/O Unit
I/O Unit Action

Function: To control multiple analog and digital output points on the same I/O unit simultaneously with a
single command.

Typical Use: To efficiently control a selected group of analog and digital outputs with one command.

Details: • This command is much faster than using Turn On, Turn Off, or Move for each point.
• Updates the IVALs and XVALs for all 64 points. Affects all output points. Does not affect

input points.
• The first specified table element corresponds to point zero.
• A digital point is turned off by setting the respective table element to 0. A digital point is

turned on by setting the respective table element to non-zero.
• An analog point is set by the value in the respective table element.
• If a specific point is disabled, only its internal value (IVAL) will be written to. If the entire I/O

unit is disabled, only the internal values (IVALS) on all 64 points will be written to.

Arguments:

Standard
Example:

OptoScript
Example:

MoveNumTableToIoUnit(Start at Index, Of Table, Move to)
(4, IO_STATUS_TABLE, VALVE_CONTROL);

This is a procedure command; it does not return a value.

Argument 1
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Float Table
Integer 32 Table

Argument 3
Move to
B100*
B200*
B3000 (Analog)*
B3000 (Digital)*
G4A8R, G4RAX*
G4D16R*
G4D32RS*
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2
SNAP-BRS*

* ioControl Professional only

Move Numeric Table to I/O Unit
Start at Index 4 Integer 32 Variable

Of Table IO_STATUS_TABLE Integer 32 Table
Move to VALVE_CONTROL SNAP-UP1-ADS
M-14 ioControl Command Reference

M

Notes: In the above example, index 4 of the table will map to point 0 of the I/O unit, index 5 will map to

point 1 of the I/O unit, and so on.

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to the table size.

See Also: Move I/O Unit to Numeric Table (page M-12)

Move Numeric Table to Numeric Table
Miscellaneous Action

Function: To copy values from one table to another.

Typical Use: To copy temporary values to a final location.

Details: • The two tables must be of the same type and must be different tables. They can be different
sizes, but make sure the Length parameter is not too long for either table.

• The valid range for each table index is zero to the table length - 1 (size - 1).

Arguments:

Standard
Example:

OptoScript
Example:

MoveNumTableToNumTable(From Table, From Index, To Table, To Index, Length)
MoveNumTableToNumTable(Temp_Table, 0, Status_Table, 16, 8);

This is a procedure command; it does not return a value.

Queue Errors: -6 = Data field error. Source and destination tables must be different.
-12 = Invalid table index or length
-13 = Overflow—integer or float value was too large.
-29 = Wrong object type. Arguments 1 and 3 must both be tables and of the same type.

See Also: Move to Numeric Table Element (page M-17)

Argument 1
From Table
Float Table
Integer 32 Table
Integer 64 Table

Argument 2
From Index
Integer 32 Literal
Integer 32 Variable

Argument 3
To Table
Float Table
Integer 32 Table
Integer 64 Table

Argument 4
To Index
Integer 32 Literal
Integer 32 Variable

Argument 5
Length
Integer 32 Literal
Integer 32 Variable

Move Numeric Table to Numeric Table
From Table Temp_Table Integer 32 Table
From Index 0 Integer 32 Literal

To Table Status_Table Integer 32 Table
To Index 16 Integer 32 Literal
Length 8 Integer 32 Literal
ioControl Command Reference M-15

Move String
String Action

Function: To copy the contents of one string to another.

Typical Use: To save, initialize, or clear strings.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• If the width of the destination string variable is less than the width of the source, the

remaining portion of the source string (characters on the right) will be discarded.
• The contents of the destination string are replaced with the source string.
• The length of the destination string will become that of the source string unless the declared

width of the destination is less than the length of the source, in which case the length of the
destination will match its declared width.

Arguments:

Standard
Example:

The following example initializes a string variable to “Hello”; quotes are shown for clarity only;
do not use them in standard commands.

The following example clears a string variable; again, quotes are shown for clarity, but do not use
them.

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator. Remember that
quotes are required in OptoScript code.
HELLO_STRING = "Hello";

MY_STRING = "";

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• In OptoScript code, simply make an assignment to the string.

Dependencies: The destination string variable should be wide enough to hold the source string. If it is not, the
source string will be truncated.

See Also: Append String to String (page A-10), Copy Time to String (page C-61)

Argument 1
Move String
String Literal
String Variable

Argument 2
To
String Variable

Move String “Hello” String Literal
To HELLO_STRING String Variable

Move String
From “” String Literal

Move to MY_STRING String Variable
M-16 ioControl Command Reference

M

Move to Numeric Table Element
Miscellaneous Action

Function: To copy a value from virtually any source to a table element.

Typical Use: To create a list of various values in a table.

Details: • All numeric type conversions are automatically handled according to the rules detailed for
the Move command.

• Any value sent to an invalid index is discarded, and an error -12 is added to the message
queue.

• The valid range for each index is zero to the table length minus 1 (size – 1).

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator.
IO_STATUS_TABLE[27] = 0;

Notes: • In OptoScript code, simply make an assignment to the table element.
• To move the same value to several table elements, put this command in a loop using a

variable for the index.

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to the table size.
-13 = Overflow—integer or float value was too large.

See Also: Move from Numeric Table Element (page M-8), Move to Numeric Table Elements (page M-18)

Argument 1
From
Analog Input
Analog Output
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
To Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Move to Numeric Table Element
From 0 Integer 32 Literal

To Index 27 Integer 32 Literal
Of Table IO_STATUS_TABLE Integer 32 Table
ioControl Command Reference M-17

Move to Numeric Table Elements
Miscellaneous Action

Function: To set a given value to a range of table elements within the same table.

Typical Use: To initialize elements within a table to the same value.

Details: • All numeric type conversions are automatically handled according to the rules detailed for
the Move command.

• Any value sent to an invalid index is discarded, and an error -12 is added to the message
queue.

• The valid range for each index is zero to the table length minus 1 (size – 1). However, if you
need to set a value to the entire table and don’t know the table’s size, you can use a starting
index of 0 and an ending index of -1.

Arguments:

Standard
Example:

OptoScript
Example:

MoveToNumTableElements(From, Start Index, End Index, Of Table)
MoveToNumTableElements(0, 4, 10, IO_STATUS_TABLE);

This is a procedure command; it does not return a value.

Notes: Compared to other methods such as loops, this command initializes table elements very quickly.

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to the table size.
-13 = Overflow—integer or float value was too large.

See Also: Move from Numeric Table Element (page M-8), Move to Numeric Table Element (page M-17)

Argument 1
From
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
End Index
Integer 32 Literal
Integer 32 Variable

Argument 4
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Move to Numeric Table Elements
From 0 Integer 32 Literal

Start Index 4 Integer 32 Literal
End Index 10 Integer 32 Literal
Of Table IO_STATUS_TABLE Integer 32 Table
M-18 ioControl Command Reference

M

Move to Pointer
Pointers Action

Function: To assign an object to a pointer.

Typical Use: To initialize a pointer.

Details: The pointer will point to the object specified. Any operation that can be performed on the object
can likewise be performed on the pointer. When you perform an operation on a pointer, you are
actually performing the operation on the object.

Arguments: Argument 1
Object
Analog Event/Reaction*
Analog Input
Analog Output
B100*
B200*
B3000 (Analog)*
B3000 (Digital)*
Chart
Communication Handle?
Digital Event/Reaction*
Digital Input
Digital Output
Down Timer Variable
Event/Reaction Group*
Float Table
Float Variable
G4A8R, G4RAX*
G4D16R*
G4D32RS*
Integer 32 Table
Integer 32 Variable
Integer 64 Table
Integer 64 Variable
PID Loop
Pointer Variable
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2
SNAP-BRS*
String Table
String Variable
Up Timer Variable

* ioControl Professional only

Argument 2
Pointer
Pointer Variable
ioControl Command Reference M-19

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the & operator to get the address
of the object and use the = operator to make the assignment:
IO_POINTER = &PUMP_VALVE;

Notes: • In OptoScript code, simply make an assignment to the pointer.
• For standard commands, the Move To Pointer command will be validated when the OK

button in the Add Instruction dialog box is pressed. For OptoScript code, the type will be
validated by the compiler.

See Also: Clear Pointer (page C-28), Pointer Equal to NULL? (page P-3)

Move To Pointer
Object PUMP_VALVE Digital Output
Pointer IO_POINTER Pointer Variable
M-20 ioControl Command Reference

M

Move to Pointer Table Element
Pointers Action

Function: To assign an object to a pointer table element.

Typical Use: To initialize a pointer table with objects of various types.

Details: • This command takes the pointer for the object being pointed to and moves it to the
table element.

Arguments:

Standard
Example:

Argument 1
Object
Analog Event/Reaction*
Analog Input
Analog Output
B100*
B200*
B3000 (Analog)*
B3000 (Digital)*
Chart
Communication Handle
Digital Event/Reaction*
Digital Input
Digital Output
Down Timer Variable
Event/Reaction Group*
Float Table
Float Variable
G4A8R, G4RAX*
G4D16R*
G4D32RS*
Integer 32 Table
Integer 32 Variable
Integer 64 Table
Integer 64 Variable
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2
SNAP-BRS*
String Table
String Variable
Up Timer Variable

* ioControl Professional only

Argument 2
Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Pointer Table

Move to Pointer Table Element
Object Valve_One Integer 32 Variable
ioControl Command Reference M-21

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the & operator to get the address
of the object and use the = operator to make the assignment:
Digital_Outputs[Current_Index] = &Valve_One;

Notes: In OptoScript code, simply make an assignment to the pointer table.

See Also: Move from Pointer Table Element (page M-9), Pointer Table Element Equal to NULL? (page P-4)

Index Current_Index Integer 32 Variable
Of Table Digital_Outputs Pointer Table
M-22 ioControl Command Reference

M

Move to String Table Element
String Action

Function: To put a string into a string table.

Typical Use: To load strings into a table for later retrieval.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• Valid range for Index (Argument 2) is zero to the table length minus 1 (size – 1).
• Strings with a length greater than the width of the table will be truncated to fit.

Arguments:

Standard
Example:

In the following example, quotes are shown for clarity only. Do not use them in standard
commands.

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the = operator. Remember that
quotes are required in OptoScript code.
STRING_TABLE[INDEX] = "MON";

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• In OptoScript code, simply make an assignment to the table element.
• Use to log key events or application errors as if the string table were a “virtual line printer.”

For example, a string table called EVENT_LOG could be used as a circular buffer to store
strings containing the time, the date, and a description such as “12-25-96, 1:00:00, Clogged
chimney alarm.” An integer variable would also be required to “remember” the next
available index (where the next entry goes).

Queue Errors: -12 = Invalid table index—index was negative or greater than or equal to the table size.

See Also: Move from String Table Element (page M-10), Get Length of Table (page G-83), Move to String
Table Elements (page M-24)

Argument 1
From
String Literal
String Variable

Argument 2
To Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
String Table

Move to String Table Element
From “MON” String Literal

To Index INDEX Integer 32 Variable
Of Table STRING_TABLE String Table
ioControl Command Reference M-23

Move to String Table Elements
String Action

Function: To put a given string into a range of table elements within the same table.

Typical Use: To initialize elements within a table to the same string.

Details: • Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• Valid range for Index (Argument 2) is zero to the table length minus 1 (size – 1). However, if

you need to set a value to the entire table and don’t know the table’s size, you can use a
starting index of 0 and an ending index of -1.

• Strings with a length greater than the width of the table will be truncated to fit.

Arguments:

Standard
Example:

In the following example, quotes are shown for clarity only. Do not use them in standard
commands.

OptoScript
Example:

MoveToStrTableElements(From, Start Index, End Index, Of Table)
MoveToStrTableElements("MON", 0, 6, DAYS);

This is a procedure command; it does not return a value. Remember that quotes are required in
OptoScript code.

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• Compared to other methods such as loops, this command initializes table elements very

quickly.

Queue Errors: -12 = Invalid table index—index was negative or greater than or equal to the table size.

See Also: Move from String Table Element (page M-10), Get Length of Table (page G-83), Move to String
Table Element (page M-23)

Argument 1
From
String Literal
String Variable

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
End Index
Integer 32 Literal
Integer 32 Variable

Argument 4
Of Table
String Table

Move to String Table Elements
From “MON” String Literal

Start Index 0 Integer 32 Literal
End Index 6 Integer 32 Literal
Of Table DAYS String Table
M-24 ioControl Command Reference

M

Multiply
Mathematical Action

Function: To multiply two numeric values.

Typical Use: To multiply two numbers to get a third number or to modify one of the original numbers.

Details: • Multiplies Argument 1 and Argument 2 and places the result in Argument 3.
• Argument 3 can be the same as either of the first two arguments (unless they are read-only,

such as analog inputs), or it can be a completely different argument.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the * operator.
Corrected_Weight = Ingredient_1_Weight * Temperature_Adjust;

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• In OptoScript code, the * operator can be used in many ways. For more information on

mathematical expressions in OptoScript code, see Chapter 11 of the ioControl User’s Guide.
• Speed Tip: Use Bit Shift instead for integer math where the multiplier is 2, 4, 8, 16, 32, 64,

and so on.

Queue Errors: -13 = Overflow error—result too large.

See Also: Divide (page D-20), Bit Shift (page B-15)

Argument 1
[Value]
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
Times
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable

Multiply
Ingredient_1_Weight Analog Input

Times Temperature_Adjust Float Variable
Put Result in Corrected_Weight Analog Output
ioControl Command Reference M-25

M-26 ioControl Command Reference

N
 N
Natural Log
Mathematical Action

Function: To calculate the natural log (base e) of a value.

Typical Use: To solve natural log calculations.

Details: Takes the natural log of Argument 1 and places the result in Argument 2.

Arguments:

Standard
Example:

OptoScript
Example:

NaturalLog(Of)
Rate_Calculation = NaturalLog(Fermentation_Rate);

This is a function command; it returns the natural log of the value. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: ioControl only implements a natural logarithm command. However, there is a simple way to
compute logarithms for bases other than base e. Divide the natural log of the number by the
natural log of the base:

Just remember that the range of the logarithm argument is a number greater than zero. A control
engine error will be flagged if the argument is less than or equal to zero.
To get a log10, divide the result of this command by 2.302585, which is ln(10).

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable

Natural Log
Of Fermentation_Rate Float Variable

Put Result in Rate_Calculation Float Variable

LogBASE(number) = ln(number)
ln(base)

For example: Log10(100) = ln(100) = 2 ln(10)

Number LOGe LOG10
1 0 0

10 2.302585 1
100 4.605170 2
1000 6.907755 3
ioControl Command Reference N-1

Queue Errors: -13 = Overflow error—result too large.
-14 = Invalid number.

See Also: Raise to Power (page R-2)

NOT
Logical Action

Function: To perform a logical NOT (True/False toggle) on any allowable value.

Typical Uses: • To invert the logical state of an integer variable.
• To toggle the state of a digital output.
• To have a digital output assume the inverse state of a digital input.

Details: • Performs a logical NOT on a copy of Argument 1 and puts result in Argument 2. Examples:

• If Argument 1 is True (non-zero), the result will be False (0). If Argument 1 is False (0), the
result will be True (non-zero).

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the not operator.
DOUT1 = not Current_State;

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. The example shown is
only one of many ways to use the not operator. For more information on logical operators
in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• Integers or digital points are best for this command. For other types, consider using Test
Within Limits, Test Greater, and Test Less.

• To invert the True/False state of Argument 1, make both arguments the same.
• To toggle all 32 or 64 bits of an integer, use Bit NOT.

Argument 1 Argument 2
0 1
-1 0
22 0

Argument 1
[Value]
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Integer 64 Variable

NOT
Current_State Integer 32 Variable

Put Result in DOUT1 Digital Output
N-2 ioControl Command Reference

N

See Also: Bit NOT (page B-5), Test Within Limits (page T-9), Test Greater (page T-4), Test Less (page T-6)

NOT?
Logical Condition

Function: To determine if a value is False (zero, off).

Typical Use: To perform False testing.

Details: • Determines if Argument 1 is False. Examples:

• Evaluates True if Argument 1 is False (zero, off). Evaluates False if Argument 1 is True
(non-zero, on).

• Functionally equivalent to Variable False?

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the not operator.
if (not Current_State) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. The example shown is
only one of many ways to use the not operator. For more information on logical operators
in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• Integers or digital points are best for this command. For other types, consider using Within
Limits? Greater? or Less?

• To determine whether a value is True (non-zero), use either Variable True? or the False exit.

See Also: AND? (page A-8) OR? (page O-7) XOR? (page X-2) Variable True? (page V-2) Within Limits?
(page W-1) Greater? (page G-146) Less? (page L-1)

Argument 1 Result
0 True
-1 False
22 False

Argument 1
Is
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Is CURRENT_STATE Integer 32 Variable
NOT?
ioControl Command Reference N-3

Not Equal?
Logical Condition

Function: To determine if two values are different.

Typical Use: To perform reverse logic.

Details: • Determines if Argument 1 is different from Argument 2. Evaluates True if the two values are
different, False otherwise. Examples:

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the <> operator.
if (BATCH_STEP <> 4) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. In OptoScript code, the
<> operator can be used in several ways. For more information on comparison operators in
OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• Use Within Limits? to test for an approximate match (recommended for non-integers). To
test for equality, use either Equal? or the False exit.

See Also: Greater? (page G-146), Less? (page L-1), Less Than or Equal? (page L-3), Greater Than or Equal?
(page G-148), Equal? (page E-16), Within Limits? (page W-1)

Argument 2 Result
0 False
0 True

65280 True
22.22 False

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
To
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Is BATCH_STEP Integer 32 Variable
Not Equal?

To 4 Integer 32 Literal
N-4 ioControl Command Reference

N

Not Equal to Numeric Table Element?
Logical Condition

Function: To determine if a numeric value is different from a specified value in a float or integer table.

Typical Use: To perform reverse logic.

Details: • Determines if one value (Argument 1) is different from another (a value at index Argument 2
in float or integer table Argument 3). Examples:

• Evaluates True if the two values are different, False otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the <> operator.
if (This_Reading <> Table_of_Readings[Table_Index]) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• In OptoScript code, the <> operator can be used in several ways. For more information on

comparison operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.
• To test for equality, use either Equal to Table Element? or the False exit.

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to table size.

See Also: Equal to Numeric Table Element? (page E-17), Greater Than Numeric Table Element?
(page G-147), Greater Than or Equal To Numeric Table Element? (page G-149), Less Than Numeric
Table Element? (page L-2), Less Than or Equal to Numeric Table Element? (page L-4)

Value 1 Value 2 Result
0.0 0.0 False

0.0001 0.0 True
-98.765 -98.765 False
-32768 -32768 False
2222 2222 False

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
At Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Is This_Reading Float Variable
Not Equal to Numeric Table Element?

At Index Table_Index Integer 32 Variable
Of Table Table_of_Readings Float Table
ioControl Command Reference N-5

Numeric Table Element Bit Clear
Logical Action

Function: To clear a specific bit (set it to 0) at the specified index in an integer table.

Typical Use: To clear a bit in an integer table that is used as a flag.

Details: • Valid range for the bit to clear is 0–31.
• Table indexes are zero through table length minus one.

Arguments:

Standard
Example:

OptoScript
Example:

NumTableElementBitClear(Element Index, Of Integer Table, Bit to Clear)
NumTableElementBitClear(4, PUMP_CTRL_BITS, 15);

This is a procedure command; it does not return a value.

Queue Errors: -12 = Invalid table index value—index was negative or greater than the table size.

See Also: Bit Clear (page B-4), Numeric Table Element Bit Set (page N-7), Numeric Table Element Bit Test
(page N-8)

Argument 1
Element Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Integer Table
Integer 32 Table

Argument 3
Bit To Clear
Integer 32 Literal
Integer 32 Variable

Numeric Table Element Bit Clear
Element Index 4 Integer 32 Literal

Of Integer Table PUMP_CTRL_BITS Integer 32 Table
Bit To Clear 15 Integer 32 Literal
N-6 ioControl Command Reference

N

Numeric Table Element Bit Set
Logical Action

Function: To set a specific bit (set it to 1) at the specified index in an integer table.

Typical Use: To set a bit in an integer table that is used as a flag.

Details: • Valid range for the bit to set is 0–31.
• Table indexes are zero through table length minus one.

Arguments:

Standard
Example:

OptoScript
Example:

NumTableElementBitSet(Element Index, Of Integer Table, Bit to Set)
NumTableElementBitSet(4, PUMP_CTRL_BITS, 15);

This is a procedure command; it does not return a value.

Queue Errors: -12 = Invalid table index value—index was negative or greater than the table size.

See Also: Bit Set (page B-14), Numeric Table Element Bit Clear (page N-6), Numeric Table Element Bit Test
(page N-8)

Argument 1
Element Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Integer Table
Integer 32 Table

Argument 3
Bit to Set
Integer 32 Literal
Integer 32 Variable

Numeric Table Element Bit Set
Element Index 4 Integer 32 Literal

Of Integer Table PUMP_CTRL_BITS Integer 32 Table
Bit to Set 15 Integer 32 Literal
ioControl Command Reference N-7

Numeric Table Element Bit Test
Logical Action

Function: To test a specific bit at the specified index in an integer table to see if it is set or not.

Typical Use: To test a bit in an integer table that is used as a flag.

Details: • A logical True (non-zero) is returned if the bit is set, otherwise a logical False (0) is returned.
• Valid range for the bit to test is 0–31 for Integer 32 tables, or 0–63 for Integer 64 tables.
• Table indexes are zero through table length minus one.

Arguments:

Standard
Example:

OptoScript
Example:

NumTableElementBitTest(Element Index, Of Integer Table, Bit to Test)
Result = NumTableElementBitTest(4, Pump_Ctrl_Bits, 15);

This is a function command; it returns the status of the bit, either set (non-zero) or not set (0). The
returned value can be consumed by a variable (as in the example shown) or by a control structure,
I/O point, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: The value returned is the bit status.

Queue Errors: -12 = Invalid table index value—index was negative or greater than the table size.

See Also: Numeric Table Element Bit Set (page N-7), Numeric Table Element Bit Clear (page N-6)

Argument 1
Element Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Integer Table
Integer 32 Table
Integer 64 Table

Argument 3
Bit to Test
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Result in
Digital Output
Float Variable
Integer 32 Variable

Numeric Table Element Bit Test
Element Index 4 Integer 32 Literal

Of Integer Table Pump_Ctrl_Bits Integer 32 Table
Bit to Test 15 Integer 32 Literal

Put Result in Result Integer 32 Variable
N-8 ioControl Command Reference

O
 O
Off?
Digital Point Condition

Function: To determine if a digital input or output is off.

Typical Use: To determine the status of a digital input or output point.

Details: • Evaluates True if the specified point is off, False if the point is on.
• Speed Tip: Use Get Digital I/O Unit as Binary Value to get the state of all points at once.

Then use Bit Test to determine the state of individual points.

Arguments:

Standard
Example:

OptoScript
Example:

IsOff(Point)
if (IsOff(Safety_Interlock)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: May be used with either input or output points.

Dependencies: Applies to all digital inputs and outputs.

See Also: On? (page O-3)

Argument 1
Is
Digital Input
Digital Output

Is Safety_Interlock Digital Input
Off?
ioControl Command Reference O-1

Off-Latch Set?
Digital Point Condition

Function: Checks the status of the specified off latch.

Typical Use: To determine if a button was pressed or an object passed by a sensor.

Details: Evaluates True if the latch is set, which indicates that the specified input changed from on to off.

Arguments:

Standard
Example:

OptoScript
Example:

IsOffLatchSet(On Point)
if (IsOffLatchSet(PUMP3_STOP_BUTTON)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: Use Clear Off-Latch if true to reset the latch for next time.

See Also: On-Latch Set? (page O-4)

Argument 1
On Point
Digital Input

On Point PUMP3_STOP_BUTTON
Off-Latch Set?
O-2 ioControl Command Reference

O

On?
Digital Point Condition

Function: To determine if a digital input or output is on.

Typical Use: To determine the status of a digital input or output point.

Details: Evaluates True if the specified point is on, False if the point is off.

Arguments:

Standard
Example:

OptoScript
Example:

IsOn(Point)
if (IsOn(Motor_Power)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • May be used with either input or output points.
• Speed Tip: Use Get I/O Unit as Binary Value to get the state of all digital points at once. Then

use Bit Test to determine the state of individual points.

Dependencies: Applies to all digital inputs and outputs.

See Also: Off? (page O-1)

Argument 1
Is
Digital Input
Digital Output

Is Motor_Power Digital Input
On?
ioControl Command Reference O-3

On-Latch Set?
Digital Point Condition

Function: Checks the status of the specified on latch.

Typical Use: To determine if a button was pressed or an object passed by a sensor.

Details: Evaluates True if the latch is set, which indicates that the specified input changed from off to on.

Arguments:

Standard
Example:

OptoScript
Example:

IsOnLatchSet(On Point)
if (IsOnLatchSet(Clip_Missing_Prox)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: Use Clear On-Latch if true to reset the latch for next time.

See Also: Off-Latch Set? (page O-2)

Open Outgoing Communication
Communication Action

Function: To establish communication with another device or entity. Once the connection is established,
communication can go both ways (incoming and outgoing).

Typical Use: To communicate with other devices on the network via TCP/IP, UDP, or a serial connection; to FTP
data from the brain to a file on another device; or to work with files in the brain’s file structure.

Arguments:

Standard
Example:

OptoScript
Example:

OpenOutgoingCommunication(Communication Handle)
COMM_STATUS = OpenOutgoingCommunication(TANK_CONTROL);

Argument 1
On Point
Digital Input

On Point Clip_Missing_Prox
On-Latch Set?

Argument 1
Communication Handle
Communication Handle

Argument 2
Put Result in
Integer 32 Variable

Open Outgoing Communication
Communication Handle TANK_CONTROL Communication Handle

Put Result in COMM_STATUS Integer 32 Variable
O-4 ioControl Command Reference

O

This is a function command; it returns a status code as defined below.

Notes: • For TCP communication, depending on network traffic and the network arrangement, you
may need to add a delay to the chart to make sure the session is open. The amount of delay
needed depends on your network. (Distant connections might even take more than one
second.) If you add a delay to the chart, then check the status of the session using Get
Number of Characters Waiting.

• See “Communication Commands” in the ioControl User’s Guide, Chapter 10.

Status Codes: 0 = Success
-10 = Serial: Invalid port number.
-20 = Serial: Device busy. May be in use by another user or application. Use ioManager to check
communication port control configuration; make sure device is not being used by PPP or M2M.
-46 = Invalid string. Check communication handle value (must have no spaces, be lowercase).
-47 = Open failed. Handle has already been opened.
-49 = No more connections are available. Maximum number of connections of this type already
in use.
-50 = Open connection timeout. Could not establish connection within the timeout period.
-78 = No destination given. When sending a file via FTP, use Send Communication Handle
Command to specify the name of the file on the remote server.
-203 = Driver could not be found or loaded. Make sure the communication handle designator (tcp,
ftp, file, etc.) is in lowercase letters and correctly spelled.
-412 = TCP/IP: Cannot connect error. Make sure the device is on.
-417 = Cannot open file. Check filename; verify that the file exists.
-446 = FTP: Login failed. Check user name, password, and maximum number of logins on server.
-447 = FTP: Connection failed. Check IP address and port.
-448 = FTP: Could not create session. Check IP address and port.

See Also: Close Communication (page C-29), Communication Open? (page C-32)
ioControl Command Reference O-5

OR
Logical Action

Function: To perform a logical OR on any two allowable values.

Typical Use: To use the true state of either value to control an output or set an alarm.

Details: • Performs a logical OR on Argument 1 and Argument 2 and puts result in Argument 3. The
result is non-zero (True) if either value is non-zero, 0 (False) otherwise. Examples:

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the or operator.
MOTOR1_OUTPUT = LIMIT_SWITCH1 or LIMIT_SWITCH2;

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. The example shown is
only one of many ways to use the or operator. For more information on logical operators in
OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• It is advisable to use only integers or digital points with this command.
• In OptoScript code, you can combine logical operators and OR multiple variables, for

example: x = a or b or c or d;
• In standard ioControl code, to OR multiple variables (such as A, B, C, and D) into one variable

(such as RESULT), do the following:

1. OR A with B, Move To RESULT.

2. OR C with RESULT, Move To RESULT.

3. OR D with RESULT, Move To RESULT.
• To test or manipulate individual bits, use Bit OR.

See Also: Bit OR (page B-10)

Argument 1 Argument 2 Argument3
0 0 0
-1 0 1
0 -1 1
-1 -1 1

Argument 1
[Value]
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
With
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Integer 64 Variable

OR
LIMIT_SWITCH1 Digital Input

With LIMIT_SWITCH2 Digital Output
Put Result in MOTOR1_OUTPUT Digital Output
O-6 ioControl Command Reference

O

OR?
Logical Condition

Function: To determine if either or both of two values are True.

Typical Use: To OR? two values within an AND? type condition block.

Details: • Determines if Argument 1 or Argument 2 is non-zero. Examples:

• Evaluates True if either argument is True (non-zero, on). Evaluates False if both arguments
are False (zero, off).

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the or operator.
if (LIMIT_SWITCH1 or LIMIT_SWITCH2) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. The example shown is
only one of many ways to use the or operator. For more information on logical operators in
OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• It is advisable to use only integers or digital points with this command.
• To determine whether both values are False (zero, off), use either Variable False? or the

False exit.
• Multiple uses of OR? within a condition block result in the OR? pairs being AND?ed.

See Also: NOT (page N-2), AND? (page A-8) XOR? (page X-2)

Argument 1 Argument 2 Result
0 0 False
-1 0 True
0 -1 True
-1 -1 True

Argument 1
Is
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
[Value]
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Is LIMIT_SWITCH1 Digital Input
OR?

LIMIT_SWITCH2 Digital Input
ioControl Command Reference O-7

O-8 ioControl Command Reference

P
 P
Pause Timer
Timing Action

Function: To pause a timer variable.

Typical Use: Used with the Continue Timer command to trade on or off time of a variable or I/O point.

Details: • The timer must have been started with either the Start Timer or Move commands.
• To start a paused timer again from the value at which it was paused, use the command

Continue Timer.

Arguments:

Standard
Example:

OptoScript
Example:

PauseTimer(Timer)
PauseTimer(OVEN_TIMER);

This is a procedure command; it does not return a value.

Notes: See “Timing Commands” in Chapter 10 of the ioControl User’s Guide for more information on
using timers.

See Also: Start Off-Pulse (page S-96), Stop Timer (page S-102), Continue Timer (page C-39), Set Down
Timer Preset Value (page S-21), Set Up Timer Target Value (page S-86)

Argument 1
Timer
Down Timer Variable
Up Timer Variable

Pause Timer
Timer OVEN_TIMER Down Timer Variable
ioControl Command Reference P-1

PID Loop Communication Enabled?
Simulation Condition

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: Checks a flag in the control engine to determine whether communication to the specified PID
loop is enabled.

Typical Use: Primarily used in factory QA testing and simulation.

Details: • Evaluates True if communication is enabled.
• Because the PID runs on the I/O unit, not in the control engine, any ioControl command

referring to a PID loop by name will not affect the PID while communication to it is disabled.
Even on a SNAP Ultimate brain, the PID loop runs on the I/O side, not the control side.

• No changes can be made to the PID by the program in the control engine while the PID is
disabled.

Arguments:

Standard
Example:

OptoScript
Example:

IsPidLoopCommEnabled(PID Loop)
if (IsPidLoopCommEnabled(FACTORY_HEAT_2BA)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

See Also: Enable Communication to PID Loop (page E-6); Disable Communication to Mistic PID Loop
(page D-9); I/O Point Communication Enabled? (page I-2)

Argument 1
PID Loop
PID Loop

PID Loop FACTORY_HEAT_2BA
PID Loop Communication Enabled?
P-2 ioControl Command Reference

P

Pointer Equal to NULL?
Pointers Condition

Function: To determine if a pointer is pointing to an object.

Typical Use: To verify that a pointer is pointing to an object (to prevent an undefined pointer).

Details: Evaluates False if the pointer is pointing to an object, True otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the == and null operators.
if (IO_Pointer == null) then

Notes: • The example shown is only one way to use these operators. For more information on
operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• If you try to perform an operation on a NULL pointer, an error will be posted in the message
queue.

See Also: Clear Pointer (page C-28), Move to Pointer (page M-19)

Argument 1
Pointer
Pointer Variable

Pointer IO_Pointer Pointer Variable
Pointer Equal to NULL?
ioControl Command Reference P-3

Pointer Table Element Equal to NULL?
Pointers Condition

Function: To determine if a specific element of a pointer table points to an object.

Typical Use: To verify that an element in a pointer table is pointing to an object (to prevent an undefined
pointer).

Details: Evaluates False if the specified element is pointing to an object, True otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the == and null operators.
if (IO_Table[Current_Index] == null) then

Notes: • The example shown is only one way to use these operators. For more information on
operators in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• If you try to perform an operation on a NULL pointer, an error will be posted in the message
queue.

See Also: Clear Pointer Table Element (page C-28), Move to Pointer Table Element (page M-21)

Argument 1
Index
Integer 32 Literal
Integer 32 Variable

Argument 2
Of Table
Pointer Table

Index Current_Index Integer 32 Variable
Pointer Table Element Equal to NULL?

Of Table IO_Table Pointer Table
P-4 ioControl Command Reference

R
 R
Raise e to Power
Mathematical Action

Function: To raise the constant e to a specified power.

Typical Use: To solve mathematical equations where the constant e is required.

Details: • Raises e to the power specified in Argument 1.
• The constant e, the base of the natural system of logarithms, has a value of 2.7182818.

Arguments:

Standard
Example:

Put Result in Pressure_Calculation Float Variable

OptoScript
Example:

RaiseEToPower(Exponent)
Pressure_Calculation = RaiseEToPower(Gas_Pressure);

This is a function command; it returns the result of the mathematical computation. The returned
value can be consumed by a variable (as shown) or by another item, such as a math expression
or a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.

Queue Errors: -13 = Overflow error—result too large.

See Also: Natural Log (page N-1), Raise to Power (page R-2)

Argument 1
Exponent
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable

Raise e to Power
Exponent Gas_Pressure Analog Input
ioControl Command Reference R-1

Raise to Power
Mathematical Action

Function: To raise a value to a specified power.

Typical Use: To solve exponentiation calculations.

Details: • Raises Argument 1 to the power specified by Argument 2 and places the result in
Argument 3.

• For use with positive numbers only.

Arguments:

Standard
Example:

OptoScript
Example:

Power(Raise, To the)
= Power(10, 2);

This is a function command; it returns the result of the mathematical computation. The returned
value can be consumed by a variable (as shown) or by another item, such as a math expression
or a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• Multiplying a number by itself is faster than raising a number to the power of 2.

Queue Errors: -13 =Overflow error—result too large.
-14 = Invalid number.

See Also: Raise e to Power (page R-1), Square Root (page S-92)

Argument 1
Raise
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
To the
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 3
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable

Raise to Power
Raise 10 Integer 32 Literal
To the 2 Integer 32 Literal

Put Result in TEN_SQUARED Integer 32 Variable
R-2 ioControl Command Reference

R

Ramp Analog Output
Analog Point Action

Function: To change an analog output value to a new value at a constant rate.

Typical Use: To raise or lower oven temperature from point A to point B at a specified rate.

Details: • When the I/O unit receives this command, it will assume control of the analog
output channel.

• This command applies to SNAP-UP1-ADS, SNAP-B3000-ENET, and SNAP-UP1-M64 I/O units
as well as to mistic I/O units."

• Ramping starts from the current output value and proceeds toward the specified
endpoint value.

• The ramp rate is specified in engineering units per second. This rate should be a positive
number. A rate of zero or less will cause error -42 (Invalid limit) to appear in the message
queue.

• Updates to the current output value will be made at 50-millisecond intervals.
• If this command is executed while the output is ramping, the ramp rate will be changed. If

this command is executed too frequently, the output will not get a chance to ramp at all.

Arguments:

Standard
Example:

OptoScript
Example:

RampAnalogOutput(Ramp Endpoint, Units/Sec, Point to Ramp)
RampAnalogOutput(SOAK_TEMP, RAMP_RATE, TEMP_CONTROL);

This is a procedure command; it does not return a value.

Notes: • To stop the ramp on a mistic I/O unit at any time, use Move (or an assignment in OptoScript
code) to send the desired “static” value to the analog output channel. To achieve the same
result on any type of brain, send a new Ramp analog Output command with the desired
“static” value as the endpoint and a very fast rate.

• Use this command only to change or start the ramp.
• Be sure the analog output value is at the desired starting point before using this command.
• If the output value must be changed, wait at least 50 milliseconds before using this

command.

Queue Errors: -42 = Invalid limit. (The ramp rate was less than or equal to zero.)

Argument 1
Ramp Endpoint
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Units/Sec
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
Point to Ramp
Analog Output

Ramp Analog Output
Ramp Endpoint SOAK_TEMP Float Variable

Units/Sec RAMP_RATE Float Variable
Point to Ramp TEMP_CONTROL Analog Output
ioControl Command Reference R-3

Read Event/Reaction Hold Buffer
Event/Reaction Action

NOTE: This command is for mistic I/O units only.

Function: To get a value that was stored at the I/O unit as a reaction to a specific event.

Typical Use: To capture a counter value at the moment a digital input turned on (or off).

Details: • There are 256 32-bit holding buffers, one for each event/reaction. If a channel is configured
as a counter and the reaction is to send its value to the hold buffer, the counts will be in the
hold buffer for the specified event/reaction.

• Other values, such as period measurements and analog inputs, may also be captured.

Arguments:

Standard
Example:

OptoScript
Example:

ReadEventReactionHoldBuffer(Event/Reaction)
Counter_Value = ReadEventReactionHoldBuffer(Sequence_Finished);

This is a function command; it returns the value in the event/reaction hold buffer. The returned
value can be consumed by a variable (as shown) or by another item, such as a math expression
or a control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Event/Reaction Commands” in Chapter 10 of the ioControl User’s Guide.
• Use Event Occurred? to determine if there is a value to be read.

Dependencies: • Event/reactions must be named and configured on the I/O unit before they can be
referenced.

• Event/reactions are not supported on local simple I/O units.

Argument 1
Event/Reaction
Analog Event/Reaction
Digital Event/Reaction

Argument 2
Put in
Float Variable
Integer 32 Variable

Read Event/Reaction Hold Buffer
Event/Reaction Sequence_Finished Analog Event/Reaction

Put in Counter_Value Integer 32 Variable
R-4 ioControl Command Reference

R

Read Number from I/O Unit Memory Map
I/O Unit—Memory Map Action

Function: Read a value from an Opto 22 SNAP Ultimate, SNAP Ethernet, or SNAP Simple I/O memory map
and store that value in an integer or float variable.

Typical Use: To access areas of the memory map not directly supported by ioControl.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• This command works with SNAP Ultimate, SNAP Ethernet, and SNAP Simple I/O units that
have been configured in ioControl or ioManager. The control engine must be connected to
the I/O unit for this command to work.

• If you are reading the Scratch Pad area of the memory map, use Scratch Pad commands
instead (Get I/O Unit Scratch Pad Float Element and related commands).

• Argument 4, Mem address, includes only the last eight digits of the memory map address
(the lower 32 bits).

• A maximum of 256 32-bit numeric or eight 128-byte string entries can be read at once.

Arguments:

Standard
Example:

OptoScript
Example:

ReadNumFromIoUnitMemMap(I/O Unit, Mem address, To)
STATUS = ReadNumFromIoUnitMemMap(MYIOUNIT, 0xFFFFFFFF, MYINTVAR);

This is a function command; it returns a status code as listed below.

Notes: • In Action blocks, use hex integer display for easy entering of memory map addresses.
• The control engine does not convert the variable type to match the area of memory map

being read. The control engine has no knowledge of which memory map areas are integers
and which are floats. You must write the correct type of data to the specified memory map
address.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Mem address
Integer 32 Literal
Integer 32 Variable

Argument 3
To
Float Variable
Integer 32 Variable
Integer 64 Variable

Argument 4
Put Status in
Integer 32 Variable

Read Number from I/O Unit Memory Map
I/O Unit MYIOUNIT SNAP-UP1-ADS

Mem address 0xFFFFFFFF Integer 32 Literal
To MYINTVAR Integer 32 Variable

Put Status In STATUS Integer 32 Variable
ioControl Command Reference R-5

For example, unpredictable results would occur if you try to read an integer 32 variable from
the analog point area of the memory map. A float variable should be used instead. See the
SNAP Ethernet-Based I/O Units Protocols and Programming Guide (Opto 22 form 1465) to
determine the data types for specific areas of the memory map.

• If Argument 3 is an Integer 64 variable, 64 bits of data will be read. For example, if you read
the address 0xF0300020 (the first integer for unit type in the Status Read area), you will also
receive the I/O unit hardware revision (month), which starts at 0xF0300024.

Status Codes: 0 = success
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-56 = Invalid memory map address.
-58 = No data received. Make sure I/O unit has power.
-81 = Error writing to memory map. Invalid memory map address.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Read Numeric Table from I/O Unit Memory Map (page R-7), Write Numeric Table to I/O Unit
Memory Map (page W-4), Write Number to I/O Unit Memory Map (page W-3), Get I/O Unit
Scratch Pad Integer 32 Element (page G-74), Get I/O Unit Scratch Pad Integer 32 Table
(page G-76), Get I/O Unit Scratch Pad Float Element (page G-70), Get I/O Unit Scratch Pad Float
Table (page G-72)
R-6 ioControl Command Reference

R

Read Numeric Table from I/O Unit Memory Map
I/O Unit—Memory Map Action

Function: Read a range of values from an Opto 22 SNAP Ultimate, SNAP Ethernet, or SNAP Simple I/O
memory map and store them into an integer 32 or float table.

Typical Use: To access areas of the memory map not directly supported by ioControl.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• This command works with SNAP Ultimate, SNAP Ethernet, and SNAP Simple I/O units that
have been configured in ioControl or ioManager. The control engine must be connected to
the I/O unit for this command to work.

• If you are reading the Scratch Pad area of the memory map, use Scratch Pad commands
instead (Get I/O Unit Scratch Pad Integer 32 Table and related commands).

• Argument 1, Length, is the length of data in the memory map in quads (groups of four bytes)
and also the number of table elements. Maximum length is 64 quadlets (256 bytes).

• Argument 4, Mem address, includes only the last eight digits of the memory map address
(the lower 32 bits).

Arguments:

Standard
Example:

OptoScript
Example:

ReadNumTableFromIoUnitMemMap(Length, Start Index, I/O Unit, Mem address, To)
STATUS = ReadNumTableFromIoUnitMemMap(0x10, 0x5, MYIOUNIT, 0xFFFFFFFF,
MYINTTABLE);

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 4
Mem address
Integer 32 Literal
Integer 32 Variable

Argument 5
To
Float Table
Integer 32 Table

Argument 6
Put Status in
Integer 32 Variable

Read Numeric Table from I/O Unit Memory Map
Length 0x10 Integer 32 Literal

Start Index 0x5 Integer 32 Literal
I/O Unit MYIOUNIT SNAP-UP1-D64

Mem address 0xFFFFFFFF Integer 32 Literal
To MYINTTABLE Integer 32 Table

Put Status in STATUS Integer 32 Variable
ioControl Command Reference R-7

This is a function command; it returns a status code as listed below.
In OptoScript code, you can use hex in some arguments and another format in others, for
example:
STATUS = ReadNumTableFromIoUnitMemMap(16, 5, MYIOUNIT, 0xFFFFFFFF,
MYINTTABLE);

Notes: • In Action blocks, use hex integer display for easy entering of memory map addresses. When
you display integers in hex, note that the length of data and start index arguments are also
in hex.

• The control engine does not convert the table type to match the area of the memory
map being read. The control engine has no knowledge of which memory map areas are
integers and which are floats. You must write the correct type of data to the specified
memory map address.

For example, unpredictable results would occur if you try to read an integer 32 table from the
analog bank area of the memory map. A float table should be used instead. See the SNAP
Ethernet-Based I/O Units Protocols and Programming Guide (Opto 22 form 1465) to
determine the data types for specific areas of the memory map.

Status Codes: 0 = success
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-56 = Invalid memory map address.
-81 = Error writing to memory map. Invalid memory map address.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Read Number from I/O Unit Memory Map (page R-5), Write Numeric Table to I/O Unit Memory
Map (page W-4), Write Number to I/O Unit Memory Map (page W-3), Get I/O Unit Scratch Pad
Integer 32 Table (page G-76), Get I/O Unit Scratch Pad Float Table (page G-72)
R-8 ioControl Command Reference

R

Read String from I/O Unit Memory Map
I/O Unit—Memory Map Action

Function: Read a value from an Opto 22 SNAP Ultimate, SNAP Ethernet, or SNAP Simple I/O memory map
and store that value in a string variable.

Typical Use: To access areas of the memory map not directly supported by ioControl.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• This command works with SNAP Ultimate, SNAP Ethernet, and SNAP Simple I/O units that
have been configured in ioControl or ioManager. The control engine must be connected to
the I/O unit for this command to work.

• If you are reading the Scratch Pad area of the memory map, use Scratch Pad commands
instead (Get I/O Unit Scratch Pad String Element and related commands).

• Argument 3, Mem address, includes only the last eight digits of the memory map address
(the lower 32 bits).

Arguments:

Standard
Example:

OptoScript
Example:

ReadStrFromIoUnitMemMap(Length, I/O Unit, Mem address, To)
STATUS = ReadStrFromIoUnitMemMap(20, MYIOUNIT, 0xFFFFFFFF, MYSTRINGVAR);

This is a function command; it returns a status code as listed below.

Notes: • In Action blocks, use hex integer display for easy entering of memory map addresses.
• The control engine does not convert the variable type to match the area of memory map

being read. The control engine doesn’t know which memory map areas are strings and which
are other formats. You must read the correct type of data from the specified memory map
address.

For example, unpredictable results would occur if you try to read a string variable from the
analog point area of the memory map. A float variable should be used instead. See the

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 3
Mem address
Integer 32 Literal
Integer 32 Variable

Argument 4
To
String Variable

Argument 5
Put Status in
Integer 32 Variable

Read String from I/O Unit Memory Map
Length 20 Integer 32 Literal
I/O Unit MYIOUNIT SNAP-B3000-ENET,

SNAP-ENET-RTC
Mem address 0xFFFFFFFF Integer 32 Literal

To MYSTRINGVAR String Variable
Put Status In STATUS Integer 32 Variable
ioControl Command Reference R-9

SNAP Ethernet-Based I/O Units Protocols and Programming Guide (Opto 22 form 1465) to
determine the data types for specific areas of the memory map.

Status Codes: 0 = Success
-3 = Invalid length. Length must be greater than zero.
-12 = Invalid table index value—index was negative or greater than the table size.
-23 = Destination string too short.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-56 = Invalid memory map address.
-81 = Error writing to memory map. Invalid memory map address.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Read String Table from I/O Unit Memory Map (page R-11), Write String Table to I/O Unit Memory
Map (page W-7), Write String to I/O Unit Memory Map (page W-9), Get I/O Unit Scratch Pad
String Element (page G-78), Get I/O Unit Scratch Pad String Table (page G-80)
R-10 ioControl Command Reference

R

Read String Table from I/O Unit Memory Map
I/O Unit—Memory Map Action

Function: Read a range of values from an Opto 22 SNAP Ultimate, SNAP Ethernet, or SNAP Simple I/O
memory map and store them in a string table.

Typical Use: To access areas of the memory map not directly supported by ioControl.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• This command works with SNAP Ultimate, SNAP Ethernet, or SNAP Simple I/O units that
have been configured in ioControl or ioManager. The control engine must be connected to
the I/O unit for this command to work.

• If you are reading the Scratch Pad area of the memory map, use Scratch Pad commands
instead (Get I/O Unit Scratch Pad String Table and related commands).

• Argument 1, Length, is the number of bytes to read in the memory map. Data is read in block
sizes that are multiples of four.

• Argument 4, Mem address, includes only the last eight digits of the memory map address
(the lower 32 bits).

Arguments:

Standard
Example:

OptoScript
Example:

ReadStrTableFromIoUnitMemMap(Length, Start Index, I/O Unit, Mem address, To)
STATUS = ReadStrTableFromIoUnitMemMap(0x10, 0x5, MYIOUNIT, 0xFFFFFFFF,
MYSTRINGTABLE);

This is a function command; it returns a status code as listed below.

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 4
Mem address
Integer 32 Literal
Integer 32 Variable

Argument 5
To
String Table

Argument 6
Put Status in
Integer 32 Variable

Read String Table from I/O Unit Memory Map
Length 0x10 Integer 32 Literal

Start Index 0x5 Integer 32 Literal
I/O Unit MYIOUNIT SNAP-UP1-ADS

Mem address 0xFFFFFFFF Integer 32 Literal
To MYSTRINGTABLE String Table

Put Status in STATUS Integer 32 Variable
ioControl Command Reference R-11

In OptoScript, you can use hex in one argument but not in others, for example:
STATUS = ReadStrTableFromIoUnitMemMap(16, 5, MYIOUNIT, 0xFFFFFFFF,
MYSTRINGTABLE);

Notes: • In Action blocks, use hex integer display for easy entering of memory map addresses. When
you display integers in hex, note that the length of data and start index arguments are also
in hex.

• The control engine does not convert the table type to match the area of the memory map
being read. The control engine has no knowledge of which memory map areas are strings
and which are other formats. You must read the correct type of data from the specified
memory map address.

For example, unpredictable results would occur if you try to read a string table from the
analog bank area of the memory map. A float table should be used instead. See the SNAP
Ethernet-Based I/O Units Protocols and Programming Guide (Opto 22 form 1465) to
determine the data types for specific areas of the memory map.

• The string table width needs to be at least 4. If not, a -23 error is returned.

Status Codes: 0 = Success
-3 = Invalid length. Length must be greater than zero.
-12 = Invalid table index value—index was negative or greater than the table size.
-23 = Destination string too short.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-56 = Invalid memory map address.
-81 = Error writing to memory map. Invalid memory map address.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Read String from I/O Unit Memory Map (page R-9), Write String Table to I/O Unit Memory Map
(page W-7), Write String to I/O Unit Memory Map (page W-9), Get I/O Unit Scratch Pad String
Element (page G-78), Get I/O Unit Scratch Pad String Table (page G-80)
R-12 ioControl Command Reference

R

Receive Character
Communication Action

Function: To get a single character from a communication handle and move it to a numeric variable.

Typical Use: To get a message from another device or file one character at a time. Use Append Character to
String (or a + in OptoScript) to append these characters (selectively if desired) to a string variable.

Details: • Receives the next character. For example, receives the oldest character from the receive
buffer for a TCP communication handle, or receives the next character in a file. Character
values will be 0–255.

• If there are no characters to receive, a negative error code number (for example, -58) is
returned. To avoid this problem, use Get Number of Characters Waiting before using this
command.

• A character 0 (ASCII null) will have a value of zero; a character 48 (ASCII zero) will have a
value of 48. These values will appear in the numeric variable. When appending a character
48 to a string variable, the number 0 will appear in the string and a 32 will appear as a
space.

Arguments:

Standard
Example:

OptoScript
Example:

ReceiveChar(Communication Handle)
CHAR = ReceiveChar(UNIT_2);

This is a function command; it returns the next character available for the communication handle.
The returned value can be consumed by a variable (as shown) or by another item, such as a math
expression or a control structure. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: • See “Communication Commands” in Chapter 10 of the ioControl User’s Guide. For an ASCII
table, see “String Commands” in the same chapter.

• Always use command Get Number of Characters Waiting before this command to avoid
unnecessary timeout errors.

• For receiving information using FTP communication handles, this command will only work
following the Send Communication Handle Command (dir option) to retrieve directory
information about the local or a remote FTP server. To retrieve a file from a remote FTP
server, use Send Communication Handle Command (get option) to bring the file into the local
file system, then use a File communication handle to access the file locally.

Status Codes: -36 = Invalid command or feature not implemented. A firmware upgrade may be required to use
this feature on this type of communication handle.

Argument 1
Communication Handle
Communication Handle

Argument 2
Put in
Float Variable
Integer 32 Variable

Receive Character
Communication Handle UNIT_2 Communication Handle

Put in CHAR Integer 32 Variable
ioControl Command Reference R-13

-58 = Character not found.
-76 = At end of file.

See Also: Append Character to String (page A-9), Get Number of Characters Waiting (page G-101), Receive
N Characters (page R-14), Send Communication Handle Command (page S-2)

Receive N Characters
Communication Action

Function: Gets a specified number of characters from a communication handle.

Typical Use: Can be used to receive the message a piece at a time, especially when the message is longer
than a single string can hold.

Details: • If N is greater than the number of characters ready to be received, all the characters will be
returned along with an error, often -39.

• If no characters are in the receive buffer, a -58 error will be returned.
• If N is greater than the string length, as many characters as will fit will be returned along

with a String Too Short error (-23).

Arguments:

Standard
Example:

OptoScript
Example:

ReceiveNChars(Put in, Number of Characters, Communication Handle)
RECV_STATUS = ReceiveNChars(RECV_MSG, QTY_CHARS, UNIT_2);

This is a function command; it returns a zero if successful, or one of the status codes listed below.

Notes: • The length of the string variable should be a few characters greater than the longest
expected string.

• Use Receive String to get end-of-message character-delimited pieces of the message in the
receive buffer.

• For receiving information using FTP communication handles, this command will only work
following the Send Communication Handle Command (dir option) to retrieve directory
information about the local or a remote FTP server. To retrieve a file from a remote FTP
server, use Send Communication Handle Command (get option) to bring the file into the local
file system, then use a File communication handle to access the file locally.

Argument 1
Put in
String Variable

Argument 2
Number of Characters
Integer 32 Literal
Integer 32 Variable

Argument 3
Communication Handle
Communication Handle

Argument 4
Put Status in
Float Variable
Integer 32 Variable

Receive N Characters
Put in RECV_MSG String Variable

Number of Characters QTY_CHARS Integer 32 Variable
Communication Handle UNIT_2 Communication Handle

Put Status in RECV_STATUS Integer 32 Variable
R-14 ioControl Command Reference

R

Dependencies: • Must have previously used Open Outgoing Communication to establish a session, or (for a

TCP communication handle) Accept Incoming Communication to accept a session initiated
by a TCP/IP peer.

• Before using this command, use Get Number of Characters Waiting to see if there is a
message.

Status Codes: -36 = Invalid command or feature not implemented. A firmware upgrade may be required to use
this feature on this type of communication handle.
-37 = Lock port timeout.
-39 = Timeout on receive.
-44 = String too short.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-58 = Character not found.
-69 = Invalid parameter (null pointer) passed. Make sure communication handle is open.
-76 = At end of file.

See Also: Receive Character (page R-13), Get Number of Characters Waiting (page G-101), Set
End-Of-Message Terminator (page S-22), Get End-Of-Message Terminator (page G-51), Transfer
N Characters (page T-11)
ioControl Command Reference R-15

Receive Numeric Table
Communication Action

Function: Moves a specific number of elements from the device or file specified in the communication
handle to an integer or float numeric table.

Typical Use: Efficient method of numeric data transfer from one entity to another.

Arguments:

Standard
Example:

OptoScript
Example:

ReceiveNumTable(Length, Start at Index, Of Table, Communication Handle)
RECV_STATUS = ReceiveNumTable(64, 0, PEER_DATA_TABLE, UNIT_2);

This is a function command; it returns one of the status codes listed below.

Note • For receiving information using FTP communication handles, this command will only work
following the Send Communication Handle Command (dir option) to retrieve directory
information about the local or a remote FTP server. To retrieve a file from a remote FTP
server, use Send Communication Handle Command (get option) to bring the file into the local
file system, then use a File communication handle to access the file locally.

Dependencies: • Must have previously used Open Outgoing Communication, or (for TCP communication
handles) Listen for Incoming Communication and Accept Incoming Communication to accept
a session initiated by a TCP/IP peer. See “Communication Commands” in Chapter 10 of the
ioControl User’s Guide for more information.

• Before using this command, use Get Number of Characters Waiting to see if there is a
message.

Status Codes: 0 = Success.
-36 = Invalid command or feature not implemented. A firmware upgrade may be required to use
this feature on this type of communication handle.
-37 = Lock port timeout.
-39 = Timeout on receive.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-58 = No data received. Make sure I/O unit has power.

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Argument 4
Communication Handle
Communication Handle

Argument 5
Put Status in
Integer 32 Variable

Receive Numeric Table
Length 64 Integer 32 Literal

Start at Index 0 Integer 32 Literal
Of Table PEER_DATA_TABLE Float Table

Communication Handle UNIT_2 Communication Handle
Put Status in RECV_STATUS Integer 32 Variable
R-16 ioControl Command Reference

R

-69 = Invalid parameter (null pointer) passed to command. Make sure communication handle is
open.
-76 = At end of file.

Queue Error: -12 = Invalid table index value—index was negative or greater than or equal to the table size.

See Also: Receive String (page R-19), Receive String Table (page R-21), Receive Pointer Table (page R-17),
Transmit Numeric Table (page T-15), Transmit String Table (page T-23), Transmit Pointer Table
(page T-16)

Receive Pointer Table
Communication Action

Function: Moves data from the device or file specified in the communication handle into the variables
pointed to by a pointer table.

Typical Use: Efficient method of data transfer from one entity to another (for example, two SNAP Ultimate I/O
systems), especially when transferring both strings and numbers.

Arguments:

Standard
Example:

OptoScript
Example:

ReceivePtrTable(Length, Start at Index, Of Table, Communication Handle)
RECV_STATUS = ReceivePtrTable(64, 0, PEER_DATA_TABLE, UNIT_2);

This is a function command; it returns one of the status codes listed below.

Dependencies: • Must have previously used Open Outgoing Communication, or (for TCP communication
handles) Listen for Incoming Communication and Accept Incoming Communication to accept
a session initiated by a TCP/IP peer. See “Communication Commands” in Chapter 10 of the
ioControl User’s Guide for more information.

• Pointers in the table cannot point to another table.
• Before using this command, use Get Number of Characters Waiting to see if there is a

message.

Notes: • Make sure that the tables used on both ends of the communication point to the same types
and sizes of data. For example, if you transmit a table with pointers to a float, an integer,
and a string with width 10, the table on the receiving end must be exactly the same.

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Pointer Table

Argument 4
Communication Handle
Communication Handle

Argument 5
Put Status in
Integer 32 Variable

Receive Pointer Table
Length 64 Integer 32 Literal

Start at Index 0 Integer 32 Literal
Of Table PEER_DATA_TABLE Pointer Table

Communication Handle UNIT_2 Communication Handle
Put Status in RECV_STATUS Integer 32 Variable
ioControl Command Reference R-17

• Check errors using the status codes returned by these commands. If you are using a
communication handle (like TCP) that buffers data and you have an error, use the Clear
Receive Buffer command to make sure the buffer does not fill up.

• For receiving information using FTP communication handles, this command will only work
following the Send Communication Handle Command (dir option) to retrieve directory
information about the local or a remote FTP server. To retrieve a file from a remote FTP
server, use Send Communication Handle Command (get option) to bring the file into the local
file system, then use a File communication handle to access the file locally.

Status Codes: 0 = Success.
-29 = Wrong object type. Pointers in the table must point to strings, integers, or floats.
-36 = Invalid command or feature not implemented. A firmware upgrade may be required to use
this feature on this type of communication handle.
-37 = Lock port timeout.
-39 = Timeout on receive.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-58 = No data received. Make sure I/O unit has power.
-69 = Invalid parameter (null pointer). Make sure communication handle is open and pointer
points to something.

Queue Error: -12 = Invalid table index value—index was negative or greater than or equal to the table size.

See Also: Receive String (page R-19), Receive String Table (page R-21), Receive Numeric Table (page R-16),
Transmit Numeric Table (page T-15), Transmit String Table (page T-23), Transmit Pointer Table
(page T-16)
R-18 ioControl Command Reference

R

Receive String
Communication Action

Function: Gets the first end-of-message (EOM) character-delimited string from the device or file specified
in the communication handle.

Typical Use: To parse data which contains EOM-delimited strings.

Details: • All characters up to the first EOM are read or moved to the string. The EOM is discarded. If
there is no EOM to be received, the control engine waits for the communication variable’s
timeout period for an EOM to arrive. If no EOM is received within the timeout period, error
code -39 is put in the status variable.

• If the EOM-delimited string is longer than the destination string length, a -23 error is
returned and as many characters as fit in the destination string are placed there. To see how
many characters were received, use a Get Length command for the destination string. The
characters remaining, minus the data just received, may be retrieved by a subsequent call to
Receive String.

Arguments:

Standard
Example:

OptoScript
Example:

ReceiveString(Put in, Communication Handle)
RECV_STATUS = ReceiveString(RECV_MSG, UNIT_2);

This is a function command; it returns one of the status codes listed below.

Notes: • This command is not recommended for receiving binary messages, since EOM characters
may occur within the binary message. Use Receive N Characters instead.

• The length of the string variable should be a few characters greater than the longest
expected string.

• All messages in the Ethernet receive buffer are 16-bit CRC error checked.
• See “Communication Commands” in Chapter 10 of the ioControl User’s Guide.
• For receiving information using FTP communication handles, this command will only work

following the Send Communication Handle Command (dir option) to retrieve directory
information about the local or a remote FTP server. To retrieve a file from a remote FTP
server, use Send Communication Handle Command (get option) to bring the file into the local
file system, then use a File communication handle to access the file locally.

Dependencies: • Must have previously used Open Outgoing Communication, or (for TCP communication
handles) Accept Incoming Communication to accept a session initiated by a TCP/IP peer.

Argument 1
Put in
String Variable

Argument 2
Communication Handle
Communication Handle

Argument 3
Put Status in
Float Variable
Integer 32 Variable

Receive String
Put in RECV_MSG String Variable

Communication Handle UNIT_2 Communication Handle
Put Status in RECV_STATUS Integer 32 Variable
ioControl Command Reference R-19

• After using Open Outgoing Communication, use the Set End-Of-Message Terminator
command to change the EOM from the default of 13 (carriage return) if necessary.

• Before using this command, use Get Number of Characters Waiting to see if there is a
message.

Status Codes: 0 = Success
-23 = Destination string too short.
-36 = Invalid command or feature not implemented. A firmware upgrade may be required to use
this feature on this type of communication handle.
-37 = Lock port timeout.
-39 = Timeout on receive.
-44 = String too short.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-57 = String not found. No EOM found.
-58 = No data received. Make sure I/O unit has power.
-69 = Invalid parameter (null pointer) passed to command. Make sure communication handle is
open.

See Also: Receive Numeric Table (page R-16), Transmit Numeric Table (page T-15), Transmit String
(page T-22), Open Outgoing Communication (page O-4), Set End-Of-Message Terminator
(page S-22), Get End-Of-Message Terminator (page G-51)
R-20 ioControl Command Reference

R

Receive String Table
Communication Action

Function: Moves a specific number of elements from the device or file specified in the communication
handle to a string table.

Typical Use: Efficient method of reading a delimited file into a table.

Arguments:

Standard
Example:

OptoScript
Example:

ReceiveStrTable(Length, Start at Index, Of Table, Communication Handle)
RECV_STATUS = ReceiveStrTable(64, 0, PEER_DATA_TABLE, UNIT_2);

This is a function command; it returns one of the status codes listed below.

Note: • For receiving information using FTP communication handles, this command will only work
following the Send Communication Handle Command (dir option) to retrieve directory
information about the local or a remote FTP server. To retrieve a file from a remote FTP
server, use Send Communication Handle Command (get option) to bring the file into the local
file system, then use a File communication handle to access the file locally.

Dependencies: • Must have previously used Open Outgoing Communication to establish a session, or (for TCP
communication handles) Listen for Incoming Communication and Accept Incoming
Communication to accept a session initiated by a TCP/IP peer. See “Communication
Commands” in Chapter 10 of the ioControl User’s Guide for more information.

• Before using this command, use Get Number of Characters Waiting to see if there is a
message.

Status Codes: 0 = Success.
-3 = Buffer overrun or invalid length. Length (Argument 1) is greater than the number of elements
in the destination table.
-12 = Invalid table index value—index was negative or greater than or equal to the table size.
-36 = Invalid command or feature not implemented. A firmware upgrade may be required to use
this feature on this type of communication handle.
-37 = Lock port timeout.
-39 = Timeout on receive.

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
String Table

Argument 4
Communication Handle
Communication Handle

Argument 5
Put Status in
Integer 32 Variable

Receive String Table
Length 64 Integer 32 Literal

Start at Index 0 Integer 32 Literal
Of Table PEER_DATA_TABLE String Table

Communication Handle UNIT_2 Communication Handle
Put Status in RECV_STATUS Integer 32 Variable
ioControl Command Reference R-21

-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-58 = No data received. Make sure I/O unit has power.
-59 = Could not receive data. Command may not apply to the type of communication handle used.
-69 = Invalid parameter (null pointer). Make sure communication handle is open.

See Also: Receive String (page R-19), Receive Numeric Table (page R-16), Receive Pointer Table
(page R-17), Transmit Numeric Table (page T-15), Transmit String Table (page T-23), Transmit
Pointer Table (page T-16), Transfer N Characters (page T-11)

Remove Current Error and Point to Next Error
Error Handling Action

Function: To drop the oldest error from the message queue and bring the next error to the top of the queue.

Typical Use: To access items in the message queue during error handling within the ioControl strategy.

Details: • Must use before the next error in the queue can be evaluated.
• Once this command is executed, the previous error can no longer be accessed.
• Commands that have the word Error in their name always evaluate the top (oldest) error in

the queue.

Arguments: None.

Standard
Example:

Remove Current Error and Point to Next Error

OptoScript
Example:

RemoveCurrentError()
RemoveCurrentError();

This is a procedure command; it does not return a value.

Notes: • You can use the condition Error? to determine if there are errors in the queue before using
this command.

• Use Debug mode to view the message queue for detailed information.

See Also: Error? (page E-19) Get Error Count (page G-53), Get Error Code of Current Error (page G-52), Get
Name of Chart Causing Current Error (page G-98), Get Name of I/O Unit Causing Current Error
(page G-99)
R-22 ioControl Command Reference

R

Retrieve Strategy CRC
Control Engine Action

Function: Returns the 16-bit CRC originally calculated on the program in RAM during the last download.

Typical Use: Periodically used in an error handler to check the integrity of the running program.

Details: Use the returned value to compare with a newly calculated CRC that was obtained by using
Calculate Strategy CRC. These two values should match exactly.

Arguments:

Standard
Example:

OptoScript
Example:

RetrieveStrategyCrc()
ORIGINAL_CRC = RetrieveStrategyCrc();

This is a function command; it returns the CRC. The returned value can be consumed by a variable
(as shown) or by another item, such as a mathematical expression or a control structure. See
Chapter 11 of the ioControl User’s Guide for more information.

See Also: Calculate Strategy CRC (page C-3)

Argument 1
Put in
Integer 32 Variable

Retrieve Strategy CRC
Put in ORIGINAL_CRC Integer 32 Variable
ioControl Command Reference R-23

Round
Mathematical Action

Function: To round up or down to the nearest integer value.

Typical Use: To discard a fractional part of a number that isn’t meaningful while still keeping the number as a
float type.

Details: Fractional values less than 0.5 cause no change to the whole number. Fractional values of 0.5 and
greater cause the whole number to be incremented by 1.

Arguments:

Standard
Example:

OptoScript
Example:

Round(Value)
Boiler_Working_Temp = Round(Boiler_Avg_Temp);

This is a function command; it returns the rounded integer value. The returned value can be
consumed by a variable (as shown) or by another item, such as a mathematical expression or a
control structure. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: Using Move (or an assignment in OptoScript code) to copy a float value to an integer variable will
round automatically.

See Also: Truncate (page T-24)

Argument 1
[Value]
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Put Result in
Float Variable
Integer 32 Variable

Round
Boiler_Avg_Temp Float Variable

Put Result in Boiler_Working_Temp Float Variable
R-24 ioControl Command Reference

S
 S
Save Files To Permanent Storage
Control Engine Action

Function: To save the files that are in the root directory of a SNAP Ultimate brain’s or SNAP-LCE
controller’s file system into flash memory.

Typical Use: To avoid losing files if the brain or controller is turned off.

Details: • All files in the root directory of the file system are saved to its flash memory, replacing files
currently in flash memory. (Firmware files, strategy files, and point configuration data are
not affected.)

• Files that are not in the root directory but inside folders cannot be saved to flash, nor can
folders be saved. To save a file to flash, put it in the root.

• Flash memory in the SNAP Ultimate brain or the SNAP-LCE controller can contain a
maximum of 393,216 bytes for file storage. A SNAP-PAC-S controller can contain a
maximum of 4 MB. However, each file stored in flash memory requires 72 bytes of overhead.

• CAUTION: If you use this command in a strategy, make certain it is not in a loop. You can
literally wear out the hardware if you write to flash too many times.

Arguments:

Standard
Example:

OptoScript
Example:

SaveFilesToPermanentStorage()
SaveFilesToPermanentStorage();

This is a function command; it always returns a zero.

Notes: • See “Control Engine Commands” in Chapter 10 of the ioControl User’s Guide.
• This command always returns a zero. However, the command could fail if files in the root

directory of the file system are too large for flash memory, or if there are no files in the root.
• To determine what files are in the file system before using this command and to find out file

sizes, you can use ioManager. Follow the instructions in Opto 22 form #1440, the ioManager
User’s Guide.

• To determine the size of a file in the file system, open the file using a File communication
handle in read mode, and then use the command Get Number of Characters Waiting. See
“Communication Commands” in Chapter 10 of the ioControl User’s Guide.

See Also: Erase Files in Permanent Storage (page E-18), Save Files To Permanent Storage (page S-1), Get
Number of Characters Waiting (page G-101)

Argument 1
Put Status In
Integer 32 Variable

Save Files To Permanent Storage
Put Status In STATUS Integer 32 Variable
ioControl Command Reference S-1

Send Communication Handle Command
Communication Action

Function: To send a command that accomplishes a specific purpose for the type of communication handle
you are using.

Typical Use: To work with files on the SNAP Ultimate brain or SNAP-LCE controller, or to change or specify a
remote filename when using an FTP communication handle.

Details: The following commands are available for the communication handles shown:

Arguments:

Comm
Handle
Type

Commands Available Description

ftp

dest:<filename>

Used for appending data to an existing file. Specifies the
destination (the name of the remote file) on the device
(specified in the communication handle) that will be used with a
Transfer or Transmit communication handle command, or with
the delete command (below).

send:<local
filename>,<remote filename>

Sends a whole file to the device specified in the communication
handle, where it will have the name indicated. If the local
filename already exists, the file is overwritten.

get:<remote filename>,<local
filename>

Retrieves the specified remote file and places it locally under
the name indicated. If the local filename already exists, the file
is overwritten.

delete

Removes the file named in the dest: command (above) on the
remote ftp server. Before using this command, use Open
Outgoing Communication first to open the handle, then use the
dest: command, then use this command.

dir<:optional directory name>

Retrieves a directory listing for the specified directory name (or
the root, if omitted). Returns an integer that indicates the
number of entries retrieved. Use commands like Receive String
and Receive String Table to read in the listings.

file

delete
Removes the file named in the communication handle and
closes the handle. Before using this command, use Open
Outgoing Communication first to open the handle.

getpos Returns an integer that indicates the current position in the file.

setpos:<position> Jumps to the specified position within the file.

find:<mystring>
(Strings only) Searches for the string within the file and returns
its location as an offset from the current position in the file. File
must have been opened in r (read) mode.

Argument 1
Communication Handle
Communication Handle

Argument 2
Command
String Literal
String Variable

Argument 3
Put Status In
Integer 32 Variable
S-2 ioControl Command Reference

S

Standard
Example:

OptoScript
Example:

SendCommunicationHandleCommand(Communication Handle, Command)
Status_Variable = SendCommunicationHandleCommand(Log_File, "delete");

This is a function command; it returns one of the status codes listed below. Quotes are required
for strings in OptoScript.

Notes: For information on communication handles, see “Communication Commands” in Chapter 10 of
the ioControl User’s Guide.

Status Codes: 0 = Success.
-11 = Could not send data.
-36 = Feature not implemented (syntax error in command, or command not supported with the
type of communication handle in use).
-44 = String too short. (File communication handle) String looked for was empty.
-46 = Invalid string. Check format of command (missing colon, etc.).
-52 = Invalid connection—not opened.
-58 = No data received. If using a file communication handle find, make sure file was opened in
r (read) mode.
-76 = End of file error. (File communication handle) Didn’t find the string you were looking for.
-497 = The remote filename used for an ftp get doesn’t exist.

See Also: Open Outgoing Communication (page O-4), Get Communication Handle Value (page G-46), Close
Communication (page C-29)

Send Communication Handle Command
Communication Handle Log_File Communication Handle

Command delete String Literal
Put Status In Status_Variable Integer 32 Variable
ioControl Command Reference S-3

Seed Random Number
Mathematical Action

Function: To set a random starting point for the random number generator.

Typical Use: • To ensure the random number generator does not generate the same sequence of numbers
each time it is started.

• To switch random number sequences on-the-fly by “re-seeding” the random number
generator.

Details: • This command seeds the random number generator with a value that should be unique each
time the command is issued.

• This command is typically used once at the beginning of a strategy, or occasionally within a
strategy. Do not use it too often, as very frequent use could cause the numbers generated to
be less random.

Arguments: None.

Standard
Example:

Seed Random Number

OptoScript
Example:

SeedRandomNumber()
SeedRandomNumber();

This is a procedure command; it does not return a value.

See Also: Generate Random Number (page G-6)
S-4 ioControl Command Reference

S

Set All Target Address States
I/O Unit Action

Function: To control which target addresses in a redundant system should be enabled on all I/O units.

Typical Use: To control which network is used in a redundant system.

Details: • A target address is the IP address of an Ethernet interface on an I/O unit.
• In a redundant network architecture, you can assign two target addresses to an I/O unit. In

ioControl these are called the Primary Address and the Secondary Address. By default, the
Primary Address is used, but the server will switch to the Secondary Address if the primary
address is not available.

• Each target address has an enabled state and an active state. If both target addresses are
enabled, they are available to be used. However, only one address can be used at a given
time, so there can only be one active address.

• Use Argument 1 to enable one or both addresses.
• Use Argument 2 to disable one or both addresses.
• Use Argument 3 to make one address active.
• Only the last bit of the 32-bit data field is used. Therefore, for arguments 1, 2, and 3 you can

use the integers 0, 1, 2, and 3 to indicate the following:
0=No change
1=Primary Target Address
2=Secondary Target Address
3=Primary and Secondary Target Addresses

Arguments:

Standard
Example:

This example assumes that there are redundant networks. It enables the secondary network,
disables the primary network, and makes the secondary network active.

OptoScript
Example:

SetAllTargetAddressStates(Must-On Mask, Must-Off Mask, Active Mask)
SetAllTargetAddressStates(2, 1, 2);

This is a procedure command; it does not return a value.

Argument 1
Must On Mask
Integer 32 Literal
Integer 32 Variable

Argument 2
Must Off Mask
Integer 32 Literal
Integer 32 Variable

Argument 3
Active Mask
Integer 32 Literal
Integer 32 Variable

Set All Target Address States
Must On Mask 2 Integer 32 Literal
Must Off Mask 1 Integer 32 Literal

Active Mask 2 Integer 32 Literal
ioControl Command Reference S-5

Notes: • See “I/O Unit Commands “ in Chapter 10 of the ioControl User’s Guide.
• Arguments 1 and 2 (the Must On Mask and the Must Off Mask) together comprise the

enable mask. You can use the enable mask in the following combinations:

• Argument 3 makes one address active or both addresses inactive as follows:

• A fully redundant system may also include ioDisplay clients and OptoOPCServers. These
commands only deal with the control engine communicating with I/O units. ioDisplay and
OptoOPCServer have their own mechanism for controlling their use of the network.

See Also: Set Target Address State (page S-81), Get Target Address State (page G-141)

To do this: Must On Mask: Must Off Mask:
Enable both addresses 3 0
Enable Primary 1 0
Enable Secondary 2 0
Enable only Primary 1 2
Enable only Secondary 2 1
Disable Primary 0 1
Disable Secondary 0 2
Disable both addresses 0 3

To do this: Active Mask:
Make both addresses inactive 0
Activate Primary 1
Activate Secondary 2
S-6 ioControl Command Reference

S

Set Analog Filter Weight
Analog Point Action

Function: To activate digital filtering and set the amount of filtering to use on an analog input point.

Typical Use: To smooth noisy or erratic input signals.

Details: • When issued, this command copies the current input value to the filtered value to initialize
it. Thereafter, a percentage of the difference between the current input value and the last
filtered value is added to the last filtered value each time the brain’s analog I/O scanner
scans the analog point.

• A zero disables filtering. A larger value increases filtering.
• For more information on how analog filter weight works, see Opto 22 form #1440, the

ioManager User’s Guide.

Arguments:

Standard
Example:

OptoScript
Example:

SetAnalogFilterWeight(To, On Point)
SetAnalogFilterWeight(FILTER_WEIGHT, TEMP_IN1);

This is a procedure command; it does not return a value.

Notes: To ensure that digital filtering will always be active, store this and other changeable I/O unit
values in permanent memory at the I/O unit. (You can do so through Debug mode.)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Analog Input

Set Analog Filter Weight
To FILTER_WEIGHT Integer 32 Variable

On Point TEMP_IN1 Analog Input
ioControl Command Reference S-7

Set Analog Gain
Analog Point Action

Function: To improve accuracy of an analog input signal or to change its range.

Typical Uses: To improve calibration on a temperature input, or to rescale an input from one range (for example,
25–50 percent) to a range of 0–100 percent.

Details: • Always use Set Analog Offset before using this command.
• The default gain value is 1.0. The valid range for gain is any floating point value. A gain of

4.0 will cause a 25 percent input value to read 100 percent (full scale).
• The calculated gain will be used until power is removed from the I/O unit, or it will always

be used if the gain is stored in permanent memory at the I/O unit.

Arguments:

Standard
Example:

OptoScript
Example:

SetAnalogGain(To, On Point)
SetAnalogGain(GAIN_COEFFICIENT, PRESS_IN);

This is a procedure command; it does not return a value.

Notes: • Instead of using this command, it is recommended that you calibrate inputs when
configuring I/O points in ioManager. See Opto 22 form 1440, the ioManager User’s Guide,
for instructions. This procedure should only have to be performed once.

• To ensure that the gain will always be used, store this and other changeable I/O unit values
in flash memory at the I/O unit. (You can do so through Debug mode or in ioManager.)

Dependencies: Must use Set Analog Offset first.

See Also: Set Analog Offset (page S-11), Calculate & Set Analog Gain (page C-1)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Analog Input

Set Analog Gain
To GAIN_COEFFICIENT Float Variable

On Point PRESS_IN Analog Input
S-8 ioControl Command Reference

S

Set Analog Load Cell Fast Settle Level
Analog Point Action

Function: To set the fast settle level on a SNAP-AILC load cell analog input module.

Typical Use: To get filtered readings faster.

Details: • Use with the filter weight command (see Set Analog Load Cell Filter Weight) to get filtered
readings faster.

• The effects of this command are greater when there are large changes in the load cell
output (such as when you first put something heavy on a scale), and a large filter weight is
used. Filtered readings are returned noticeably faster.

• Values for the fast settle level range from 0 to 32767. A value of 0 turns the fast settle
feature off. Setting the filter weight value to 0, 1, or 32767 also turns this feature off.

• Setting the fast settle level too low causes this feature to start too soon, and results in no
reduction in the time it takes to get the filtered value.

• The filtered reading is on channel 2 of the SNAP-AILC module.
• To see how the fast settle level works:

1 Use the Set Analog Load Cell Filter Weight command to set the filter weight to 255.
2 Use the Set Analog Load Cell Fast Settle Level command to set the fast settle level to 0

(shuts off fast settle feature).
3 Use ioDisplay to display Supertrends of the unfiltered channel 1, and the filtered channel

2.
4 Cause a large change in the load cell output, and observe the difference in the unfiltered

and filtered trends. Note the time it takes for the filtered reading to settle.
5 Now set the fast settle level to 1 and make a large change to the load cell output. This

causes fast settling to be applied too soon, and the trend for the filtered reading will
show erratic spikes.

6 As you increase the fast settle level, the trend will smooth out and return readings faster
than when the fast settle level is not applied. By experimenting, you will find the ideal
fast settle value to use in your application.

Arguments:

Standard
Example:

This example sets the fast settle level of the analog point to 5.

OptoScript
Example:

SetAnalogLoadCellFastSettleLevel(To, On Point)
SetAnalogLoadCellFastSettleLevel(5, Load_Cell_A);

This is a procedure command; it does not return a value.

Argument 1
To
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Analog Input

Set Analog Load Cell Fast Settle Level
To 5 Integer 32 Literal

On Point Load_Cell_A Analog Input
ioControl Command Reference S-9

Notes: • To ensure that the value will always be correct, store this and other changeable I/O unit
values in flash memory at the I/O unit. (You can do so through Debug mode or in ioManager.)

Dependencies: This command is valid only when used on a properly configured SNAP-AILC module.

See Also: Set Analog Load Cell Filter Weight (page S-10)

Set Analog Load Cell Filter Weight
Analog Point Action

Function: To set the filter weight on a SNAP-AILC load cell analog input module.

Typical Use: To smooth load cell input signals that are erratic or change suddenly.

Details: • Initially, this command copies the current inut value to the filtered value to initialize it.
Thereafter, a percentage of the diference between the current input value and the last
filtered value is added each time the module scans th load cell point.

• The filter weight range of values is 0 to 255. A 0 or 1 disables filtering. A larger value
increases filtering, and the default filter weight value is 128.

• Use with the fast settle level (see Set Analog Load Cell Settle Level) to get the filtered
reading faster.

• The filtered reading is on channel 2 of the SNAP-AILC module.

Arguments:

Standard
Example:

This example sets the filter weight to 25.

OptoScript
Example:

SetAnalogLoadCellFilterWeight(To, On Point)
SetAnalogLoadCellFilterWeight(25, Load_Cell_A);

This is a procedure command; it does not return a value.

Notes: • To ensure that the value will always be correct, store this and other changeable I/O unit
values in flash memory at the I/O unit. (You can do so through Debug mode or in ioManager.)

• The filtered weight is reduced when the difference between the adc data and the filtered
data is greater than the fast settle level.

Dependencies: This command is valid only when used on a properly configured SNAP-AILC module.

See Also: Set Analog Load Cell Fast Settle Level (page S-9)

Argument 1
To
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Analog Input

Set Analog Load Cell Filter Weight
To 25 Integer 32 Literal

On Point Load_Cell_A Analog Input
S-10 ioControl Command Reference

S

Set Analog Offset
Analog Point Action

Function: To improve the accuracy of an analog input signal or to change its range.

Typical Uses: • To improve calibration on a temperature input.
• To rescale an input from one range (for example, 25–50 percent) to a range of 0–100

percent.

Details: • Always use Set Analog Gain after using this command.
• The default offset value is 0.
• An offset of -1,024 will cause a 25 percent input value to read 0 percent (zero scale).
• The calculated offset will be used until power is removed from the I/O unit, or it will always

be used if the offset is stored in permanent memory at the I/O unit.

Arguments:

Standard
Example:

OptoScript
Example:

SetAnalogOffset(To, On Point)
SetAnalogOffset(OFFSET, PRESS_IN);

This is a procedure command; it does not return a value.

Notes: • Instead of using this command, it is recommended that you calibrate inputs when
configuring I/O points in ioManager. See Opto 22 form 1440, the ioManager User’s Guide,
for instructions. This procedure should only have to be performed once.

• To ensure that the offset will always be used, store this and other changeable I/O unit
values in flash memory at the I/O unit. (You can do so through Debug mode or in ioManager.)

See Also: Set Analog Gain (page S-8), Calculate & Set Analog Offset (page C-2)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Analog Input

Set Analog Offset
To OFFSET Integer 32 Variable

On Point PRESS_IN Analog Input
ioControl Command Reference S-11

Set Analog Totalizer Rate
Analog Point Action

NOTE: This command is for mistic I/O units only.

Function: To start the totalizer and to establish the sampling rate.

Typical Use: To accumulate total flow based on a varying flow rate signal.

Details: • The specified analog input point is sampled at the end of each time interval.
• The sampled value is added to the previous accumulated total.
• Valid range for the sampling rate is 0.0 to 3276.7 seconds.
• Setting the sampling rate to 0.0 seconds will discontinue totalizing.
• Totalizing will be bidirectional if the input range is bidirectional, such as -10 to +10.

Arguments:

Standard
Example:

OptoScript
Example:

SetAnalogTotalizerRate(To Seconds, On Point)
SetAnalogTotalizerRate(TOTALIZE_RATE, FUEL_FLOW);

This is a procedure command; it does not return a value.

Notes: • Use Get Analog Totalizer Value to “watch” the total accumulate. Wait for a reasonable
value to accumulate (the greater the better, but less than 32,767) before proceeding.

• Use Get & Clear Analog Totalizer Value to move the accumulated total to a temporary float
variable. Divide the temporary float variable by the appropriate divisor from the conversion
table below, putting the result in the temporary float variable. Finally, add the temporary
float variable to the cumulative total float variable. The following table uses a sampling rate
of 1.0 seconds. (For other sample rates, divide these numbers by the sample rate.)

• The following series of commands reads the accumulated total from the I/O unit, scales it,
then adds the result to a float variable representing the total number of liters. The flow
signal is scaled 0–1,000 liters per minute.

Get & Clear Analog Totalizer Value

Argument 1
To (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Analog Input

Set Analog Totalizer Rate
To (Seconds) TOTALIZE_RATE Float Variable

On Point FUEL_FLOW Analog Input

Flow Rate Units Divisor (Float Literal)
PER SECOND 1.0
PER MINUTE 60.0
PER HOUR 3600.0
PER DAY 86400.0
S-12 ioControl Command Reference

S

Divide Temp_Float1

Do Add Temp_Float1

See Also: Get Analog Totalizer Value (page G-43), Get & Clear Analog Totalizer Value (page G-17)

From FLOW_RATE Analog Input
Put in TEMP_FLOAT1 Float Variable

By 60.0
Put Result in TEMP_FLOAT1 Float Variable

Plus LITERS
Put Result in LITERS Float Variable
ioControl Command Reference S-13

Set Analog TPO Period
Analog Point Action

Function: To set the time proportional output period of an analog point where the analog TPO module
is used.

Typical Use: To control the duty cycle of resistive heating elements used for temperature control.

Details: • Analog points will not function as TPOs until this command is issued.
• For a SNAP-AOD-29 module, TPO periods are multiples of 0.251 seconds, ranging from 0.251

to 64.25 seconds. If the value entered is not an exact multiple of the period, it is rounded to
the nearest period value.

• The time proportion period specifies the total time the output is varied.
• Use Move to set the percent of on time by moving a value from 0–100 to the analog

output point.
• Always use 0–100 for the analog TPO scaling.

Arguments:

Standard
Example:

This example sets the period for the TPO point named TPO OUTPUT to 5.02 seconds (the value
5.0 is rounded automatically to the nearest period value, 5.02). If Move is used to set a 50 percent
duty cycle (by Moving 50.0 to TPO OUTPUT), then the analog output will repeatedly cycle on for
2.51 seconds and off for 2.51 seconds.

OptoScript
Example:

SetAnalogTpoPeriod(To, On Point)
SetAnalogTpoPeriod(5.0, TPO_OUTPUT);

This is a procedure command; it does not return a value.

Notes: • To ensure that the TPO period will always be correct, store this and other changeable I/O
unit values in flash memory (EEPROM) at the I/O unit using the Debug mode in ioControl. For
more information, see the ioControl User’s Guide.

• If the TPO period is not stored in permanent memory at the I/O unit, use Set Analog TPO
Period immediately before Moving a new value to the TPO every time. This ensures that the
TPO period will be configured properly if the I/O unit has experienced loss of power. Do not,
however, issue these commands more frequently than necessary since this can be
counterproductive.

Dependencies: This command is valid only when used on a properly configured time proportional output module.

Argument 1
To (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Analog Output

Set Analog TPO Period
To (Seconds) 5.0 Float Literal

On Point TPO_OUTPUT Analog Input
S-14 ioControl Command Reference

S

Set Communication Handle Value
Communication Action

Function: Sends a string to change the current value of the communication handle.

Typical Use: To set the current communication parameters for a communication handle before using an Open
Outgoing Communication command.

Arguments:

Standard
Example:

OptoScript
Example:

SetCommunicationHandleValue(Value, Communication Handle)
SetCommunicationHandleValue("tcp:10.22.30.40:22005", COMM_Y);

This is a procedure command; it does not return a value. Quotes are required for strings in
OptoScript.

Notes: • The example shown above is for outgoing communication using a TCP communication
handle. See “Communication Commands” in Chapter 10 of the ioControl User’s Guide for
details about all communication handle types and values.

• If you use a string literal in Argument 1, make sure the communication handle type (for
example, tcp, ftp, file) is in lowercase letters.

• If the communication handle is currently open, the value will be changed but will not affect
the connection. To avoid confusion, use Communication Open? before using this command,
to determine whether the handle is already open.

See Also: Get Communication Handle Value (page G-46) Open Outgoing Communication (page O-4),
Communication Open? (page C-32)

Argument 1
From
Communication Handle
String Literal
String Variable

Argument 2
To
Communication Handle

Set Communication Handle Value
From tcp:10.22.30.40:22005 String Literal

To COMM_Y Communication Handle
ioControl Command Reference S-15

Set Date
Time/Date Action

Function: To set the date in the control engine’s real-time clock/calendar to the value contained in a string
variable or string literal, using the standard United States format mm/dd/yyyy, where
mm = month (01–12), dd = day (01–31), and yyyy = year (2000–2099).

Typical Use: To set the date from an ioControl program.

Details: • Uses the standard
• If the desired date to set is March 1, 2002, the To parameter (Argument 1) should contain

the string “03/01/2002”.
• Executing this command would set the control engine’s real-time clock/calendar to March 1,

2002.
• Updates day of week also.
• All erroneous date strings are ignored.

Arguments:

Standard
Example:

OptoScript
Example:

SetDate(To)
SetDate(US_DATE_STRING);

This is a procedure command; it does not return a value.

Notes: • An easier way to update the time and date on the control engine is to click the Sync to PC’s
Time/Date button when inspecting the control engine in ioControl Debug mode or in
ioTerminal.

• To change the date, use an integer variable as a change trigger. Set the trigger variable True
after the date string has the desired value. When the trigger is True, the program executes
this command, then sets the trigger variable False.

• The control engine’s real-time clock/calendar will automatically increment the time and date
after they are set.

• Do not issue this command continuously.

See Also: Copy Date to String (DD/MM/YYYY) (page C-59), Copy Date to String (MM/DD/YYYY)
(page C-60), Copy Time to String (page C-61)

Argument 1
To
String Literal
String Variable

Set Date
To US_DATE_STRING String Variable
S-16 ioControl Command Reference

S

ioControl Command Reference S-17

Set Day
Time/Date Action

Function: To set the day of the month (1 through 31) in the control engine’s real-time clock/calendar.

Typical Use: To set the day of the month from an ioControl program.

Details: • The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
• If the desired day of the month to set is March 2, 2002, the To parameter (Argument 1)

should contain the value 2.
• Executing this command would then set the day of the month in the control engine’s

real-time clock/calendar.
• Updates day of week also.
• All erroneous day values are ignored.

Arguments:

Standard
Example:

OptoScript
Example:

SetDay(To)
SetDay(DAY_OF_MONTH);

This is a procedure command; it does not return a value.

Note: Do not issue this command continuously.

See Also: Get Day (page G-49), Get Day of Week (page G-50), Get Hours (page G-63), Get Minutes
(page G-86), Get Month (page G-97), Get Seconds (page G-135), Get Year (page G-145), Set
Hours (page S-25), Set Minutes (page S-43), Set Month (page S-57), Set Seconds (page S-78),
Set Year (page S-89)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set Day
To DAY_OF_MONTH Integer 32 Variable

Set Digital I/O Unit from MOMO Masks
Deprecated

NOTE: This command has been deprecated. It is still functional, however if you are developing a
new strategy, use Set I/O Unit from MOMO Masks (page S-29) instead.

Function: To control multiple digital output points on the same I/O unit simultaneously with a single
command.

Typical Use: To efficiently control a selected group of digital outputs with one command.

Details: • This command is 16 times faster than using Turn On or Turn Off 16 times.
• Updates the IVALs and XVALs for all 16 points. Affects only selected output points. Does not

affect input points.
• Uses only the lowest (least significant) 16 bits of the integer. The least significant bit

corresponds to point zero.
• A point is selected for activation by setting the respective bit in the 16-bit data field of

argument 1 (the must-on bit mask) to a value of “1.” A point is selected for deactivation by
setting the respective bit in the 16-bit data field of argument 2 (the must-off bit mask) to a
value of “1.” Any bits set to a value of 0 in both arguments 1 and 2 will leave those points
unaffected.

• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values
(IVALs) will be written.

Arguments:

Standard
Example:

The effect of this command is illustrated below:

Argument 1
Must On Mask
Integer 32 Literal
Integer 32 Variable

Argument 2
Must Off Mask
Integer 32 Literal
Integer 32 Variable

Argument 3
Digital I/O Unit
B100
B3000 (Digital)
B3000 SNAP Mixed I/O
G4 Digital Local Simple I/O Unit
G4D16R
G4D32RS
SNAP-BRS

Set Digital I/O Unit from MOMO Masks
Must On Mask PUMPS_ON_MASK Integer 32 Variable
Must Off Mask 3840 Integer 32 Literal
Digital I/O Unit PUMP_CTRL B3000 (Digital)

Point Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

Hex 0 0 F 0

Must-off
Bit Mask

Binary 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

Hex 0 F 0 0
S-18 ioControl Command Reference

S

In this example, points 4, 5, 6, and 7 will be turned on. Points 8, 9, 10, and 11 will be turned off.
Points 0, 1, 2, 3, 12, 13, 14, and 15 are not changed.

OptoScript
Example:

SetDigitalIoUnitFromMomo(Must-On Mask, Must-Off Mask, Digital I/O Unit)
SetDigitalIoUnitFromMomo(PUMPS_ON_MASK, 3840, PUMP_CTRL);

This is a procedure command; it does not return a value.

Notes: • For a 64-point digital-only rack, use the command Set Digital-64 I/O Unit from MOMO
Masks.

• Use Bit Set or Bit Clear to change individual bits in an integer variable.

Set Digital-64 I/O Unit from MOMO Masks
Deprecated

NOTE: This command has been deprecated. It is still functional, however if you are developing a
new strategy, use Set I/O Unit from MOMO Masks (page S-29) instead.

Function: To control multiple digital output points on the same 64-point digital-only I/O unit simultaneously
with a single command.

Typical Use: To efficiently control all digital outputs on a 64-point digital rack with one command.

Details: • This command is 64 times faster than using Turn On or Turn Off 64 times.
• Updates the IVALs and XVALs for all 64 points. Affects only selected output points. Does not

affect input points.
• To turn on a point, set the respective bit in the 64-bit data field of argument 1 (the must-on

bit mask) to a value of “1.”To turn off a point, set the respective bit in the 64-bit data field of
argument 2 (the must-off bit mask) to a value of “1.” To leave a point unaffected, set its bits
to a value of 0 in both arguments 1 and 2. (Check for conflicts; if the same bit is set to 1 in
both masks, the point is turned off.)

• The least significant bit corresponds to point zero.
• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.

Arguments:

Standard
Example:

Argument 1
Must On Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
Must Off Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
Digital-64 I/O Unit
SNAP-ENET-D64 Unit
SNAP-UP1-D64 Unit

Set Digital-64 I/O Unit from MOMO Masks
Must On Mask 0x060003C0000000C2 Integer 64 Literal
Must Off Mask 0xB0F240010308A020 Integer 64 Literal

Digital-64 I/O Unit PUMP_CTRL_UNIT SNAP-UP1-D64
ioControl Command Reference S-19

The effect of this command is illustrated below:

To save space, the example shows only the first eight points and the last eight points on the rack.
For the points shown, points 58, 57, 7, 6, and 1 will be turned on. Points 63, 61, 60, and 5 will be
turned off. Other points shown are not changed.

OptoScript
Example:

SetDigital64IoUnitFromMomo(Must-On Mask, Must-Off Mask, Digital-64 I/O Unit)
SetDigital64IoUnitFromMomo(0x060003C0000000C2i64, 0xB0F240010308A020i64,
PUMP_CTRL_UNIT);

This is a procedure command; it does not return a value. (Note that Integer 64 literals in
OptoScript code take an i64 suffix.)

Notes: Use Bit Set or Bit Clear to change individual bits in an integer variable.

See Also: Get I/O Unit as Binary Value (page G-65)

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2

Must-off
Bit Mask

Binary 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

Hex B 0 2 0
S-20 ioControl Command Reference

S

Set Down Timer Preset Value
Timing Action

Function: To set the value from which a down timer counts down.

Typical Use: To initialize a down timer.

Details: • This command sets the value from which a down timer counts down, but it does not start the
timer. To start the timer counting down, use the command Start Timer.

• The preset value will be persistent between calls to Start Timer.
• Argument 1 must be a positive number in seconds.

Arguments:

Standard
Example:

OptoScript
Example:

SetDownTimerPreset(Target Value, Down Timer)
SetDownTimerPreset(60.0, OVEN_TIMER);

This is a procedure command; it does not return a value.

Notes: • See “Timing Commands” in Chapter 10 of the ioControl User’s Guide for more information
on using timers.

• To set the preset value and start the timer in one step, use the Move command to move the
preset value to the timer. The timer will immediately start counting down from the value
moved to it. Using Move overwrites any preset value previously set, so subsequent Start
Timer commands will start from the value most recently moved.

See Also: Start Off-Pulse (page S-96), Stop Timer (page S-102), Continue Timer (page C-39), Pause Timer
(page P-1), Down Timer Expired? (page D-21)

Argument 1
Target Value
Float Literal
Float Variable

Argument 2
Down Timer
Down Timer Variable

Set Down Timer Preset Value
Target Value 60.0 Float Literal
Down Timer OVEN_TIMER Down Timer Variable
ioControl Command Reference S-21

Set End-Of-Message Terminator
Communication Action

Function: To set the end-of-message (EOM) character for a specific communication handle.

Typical Use: To parse delimited strings when using one of the following commands: Receive String, Receive
String Table, Transmit/Receive String, Transmit String, Transmit String Table.

Details: • The communication handle must already be opened for this command to take effect. Use the
command Open Outgoing Communication to open the handle.

• The character is represented by an ASCII value (see the ASCII table under “String
Commands” in Chapter 10 of the ioControl User’s Guide). For example, a space is a character
32 and a “1” is a character 49. Commonly used delimiters include a comma (character 44)
and a colon (character 58).

• The default EOM is 13 (carriage return).

Arguments:

Standard
Example:

OptoScript
Example:

SetEndOfMessageTerminator(Communication Handle, To Character)
SetEndOfMessageTerminator(UIO_A, EOM_Term);

This is a procedure command; it does not return a value.

Queue Errors: -52 = Invalid connection—not opened.

See Also: Get End-Of-Message Terminator (page G-51), Open Outgoing Communication (page O-4),
Receive String Table (page R-21), Transmit String Table (page T-23)

Argument 1
Communication Handle
Communication Handle

Argument 2
To Character
Integer 32 Literal
Integer 32 Variable

Set End-Of-Message Terminator
Communication Handle UIO_A Communication Handle

To Character EOM_Term Integer 32 Variable
S-22 ioControl Command Reference

S

Set HDD Module from MOMO Masks
High Density Digital Module Action

Function: To control multiple points on the same high-density digital output module simultaneously with a
single command.

Typical Use: To efficiently control multiple digital outputs on one module with one command.

Details: • If setting all 32 points, this command is about 32 times faster than using Turn On HDD
Module Point or Turn Off HDD Module Point 32 times.

• To turn on a point, set the respective bit in the 32-bit data field of argument 1 (the must-on
bit mask) to a value of 1. To turn off a point, set the respective bit in the 32-bit data field of
argument 2 (the must-off bit mask) to a value of 1. To leave a point unaffected, set its bits to
a value of 0 in both arguments 1 and 2. (Check for conflicts; if the same bit is set to 1 in both
masks, the point is turned off.)

• The least significant bit corresponds to point zero.

Arguments:

Standard
Example:

The effect of this command is illustrated below:

To save space, the example shows only the first eight and the last eight digital points on the rack.
For the points shown, points 26, 25, 7, 6, and 1 will be turned on. Points 31, 29, 28, and 5 will be
turned off. Other points shown are not changed.

OptoScript
Example:

SetHddModuleFromMomo(I/O Unit, Module Number, Must-On Mask, Must-Off Mask)
Status_Code = SetHDDModuleFromMomo(Bldg_A, 3, 0x060000C2, 0xB0000020);

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Module Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Must On Mask
Integer 32 Literal
Integer 32 Variable

Argument 4
Must Off Mask
Integer 32 Literal
Integer 32 Variable

Argument 5
Put Status In
Integer 32 Variable

Set HDD Module from MOMO Masks
I/O Unit Bldg_A SNAP-UP1-M64

Module Number 3 Integer 32 Literal
Must On Mask 0x060000C2 Integer 32 Variable
Must Off Mask 0xB0000020 Integer 32 Literal
Put Status In Status_Code SNAP-UP1-ADS

Point Number 31 30 29 28 27 26 25 24 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2

Must-off
Bit Mask

Binary 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

Hex B 0 2 0
ioControl Command Reference S-23

This is a function command; it returns one of the status codes shown below.

Status Codes: 0 = Success
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Turn On HDD Module Point (page T-28), Turn Off HDD Module Point (page T-26)
S-24 ioControl Command Reference

S

Set Hours
Time/Date Action

Function: To set the hours value (0 through 23) in the control engine’s real-time clock/calendar.

Typical Use: To set the hours value from an ioControl program.

Details: • The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
• Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and

11:59:00 p.m. = 23:59:00.
• If the desired hour to set is 2 p.m. (14:00:00), the To parameter (Argument 1) should contain

the value 14.
• Executing this command would set the hours value in the control engine’s real-time

clock/calendar.
• The control engine’s real-time clock/calendar will automatically increment the time and date

after they are set.
• All erroneous hour values are ignored.

Arguments:

Standard
Example:

OptoScript
Example:

SetHours(To)
SetHours(HOURS);

This is a procedure command; it does not return a value.

Note: Do not issue this command continuously.

See Also: Get Day (page G-49), Get Day of Week (page G-50), Get Hours (page G-63), Get Minutes
(page G-86), Get Month (page G-97), Get Seconds (page G-135), Get Year (page G-145), Set Day
(page S-17), Set Minutes (page S-43), Set Month (page S-57), Set Seconds (page S-78), Set Year
(page S-89)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set Hours
To HOURS Integer 32 Variable
ioControl Command Reference S-25

Set I/O Unit Event Message State
I/O Unit—Event Message Action

Function: To activate or deactivate a SNAP Ultimate or Ethernet I/O unit event message, or to acknowledge
an SNMP message.

Typical Use: To send an e-mail, SNMP, or other kind of event message.

Details: • Use ioManager to configure the types, intervals, and text of event messages. You can
configure up to 128 messages for each I/O unit.

• To start sending the message as it is configured, set the state to 1 = Active.
• SNMP messages must be acknowledged in order to inactivate them. To do so, set the state

to 2 = Acknowledged.
• To stop sending the message or return it to a non-triggered state, set it to 0 = Inactive. A

delay is not needed between activating and inactivating the message, as the commands are
put into a queue and processed in order.

Arguments:

Standard
Example:

OptoScript
Example:

SetIoUnitEventMsgState(I/O Unit, Event Message Number, State)
Status = SetIoUnitEventMsgState(UIO_A, 5, 1);

This is a function command; it returns one of the status codes listed below.

Notes: • See “I/O Unit—Event Message Commands” in Chapter 10 of the ioControl User’s Guide.
• Use Get I/O Unit Event Message State to check the current state of the message, for

example, to see if the message is already active before activating it.
• If you are using one event message for several situations, use Set I/O Unit Event Message

Text to change the text of the message being sent.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Event Message Number
Integer 32 Literal
Integer 32 Vairable

Argument 3
State
Integer 32 Literal
Integer 32 Vairable

Argument 4
Put Status in
Integer 32 Vairable

Set I/O Unit Event Message State
I/O Unit UIO_A SNAP-UP1-ADS

Event Message Number 5 Integer 32 Literal
State 1 Integer 32 Literal

Put Status in Status Integer 32 Variable
S-26 ioControl Command Reference

S

Status Codes: 0 = success

-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Set I/O Unit Event Message Text (page S-27), Get I/O Unit Event Message State (page G-67), Get
I/O Unit Event Message Text (page G-68)

Set I/O Unit Event Message Text
I/O Unit—Event Message Action

Function: To change the text of an event message on a SNAP Ultimate or Ethernet I/O unit.

Typical Use: To “recycle” a message if all 128 messages on an I/O unit are already used, to create dynamic
message content.

Details: • Use ioManager to configure the types, intervals, and text of event messages. You can
configure up to 128 messages for each I/O unit.

• Use caution with this command. Change text only when necessary, and use Get I/O Unit
Event Message State to check the state of the message before changing it.

Arguments:

Standard
Example:

Put Status in STATUS Integer 32 Variable

OptoScript
Example:

SetIoUnitEventMsgText(I/O Unit, Event Message Number, Message Text)
STATUS = SetIoUnitEventMsgText(UIO_A, 5, "Machine failure");

This is a function command; it returns one of the status codes listed below. Note that quotes
must be used for strings in OptoScript.

Notes: • See “I/O Unit—Event Message Commands” in Chapter 10 of the ioControl User’s Guide.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Event Message Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Message Text
String Literal
String Variable

Argument 4
Put Status in
Integer 32 Variable

Set I/O Unit Event Message Text
I/O Unit UIO_A SNAP-UP1-ADS

Event Message Number 5 Integer 32 Literal
Message Text Machine failure String Literal
ioControl Command Reference S-27

• This command should be used when all 128 messages are already in use. If you need to use
the same message with different text, it is best to double up on messages that are mutually
exclusive, for example, “Tank level too high” and “Tank level too low”.

• This command can also be used to create dynamic message content, for example to send a
message reporting a changing pressure level.

• Before using this command, check the current state of the message using Get I/O Unit Event
Message State, to avoid sending the wrong message.

• Message text is limited to 127 characters. If it is longer than 127 characters, the first 127
characters are sent and an error -23 is returned.

Status Codes: 0 = success
-12 = Invalid index. Event message number is less than 0 or greater than 127.
-23 = Destination string too short. Message text is longer than 127 characters. The first 127
characters are sent.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Set I/O Unit Event Message State (page S-26), Get I/O Unit Event Message State (page G-67),
Get I/O Unit Event Message Text (page G-68)
S-28 ioControl Command Reference

S

Set I/O Unit from MOMO Masks
I/O Unit Action

Function: To control multiple digital output points on the same I/O unit simultaneously with a single
command.

Typical Use: To efficiently control a selected group of digital outputs with one command.

Details: • Updates the IVALs and XVALs for all selected output points. Does not affect input points.
Does not affect analog points in any position on the rack.

• To turn on a point, set the respective bit in the data field of argument 1 (the must-on bit
mask) to a value of “1.”To turn off a point, set the respective bit in the data field of argument
2 (the must-off bit mask) to a value of “1.” To leave a point unaffected, set its bits to a value
of 0 in both arguments 1 and 2. (Check for conflicts; if the same bit is set to 1 in both masks,
the point is turned off.)

• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values
(IVALs) will be written.

Arguments:

Standard
Example:

The effect of this command is illustrated below::

Argument 1
Must On Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
Must Off Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
Digital I/O Unit
B100
B3000 (Digital)
B3000 SNAP Mixed I/O
G4 Digital Local Simple I/O Unit
G4D16R
G4D32RS
SNAP-BRS
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2
SNAP-UP1-ADS
SNAP-UP1-M64

Set Digital I/O Unit from MOMO Masks
Must On Mask 0x060003C0000000C2 Integer 64 Literal
Must Off Mask 0xB0F240010308A020 Integer 64 Literal
Digital I/O Unit PUMP_CTRL_UNIT SNAP-UP1-M64

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2

Must-off
Bit Mask

Binary 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

Hex B 0 2 0
ioControl Command Reference S-29

To save space, the example shows only the first eight points and the last eight points on the rack.
For the points shown, points 58, 57, 7, 6, and 1 will be turned on. Points 63, 61, 60, and 5 will be
turned off. Other points shown are not changed.

OptoScript
Example:

SetIoUnitFromMomo(Must-On Mask, Must-Off Mask, Digital I/O Unit)
SetIoUnitFromMomo(0x060003C0000000C2i64, 0xB0F240010308A020i64,
PUMP_CTRL_UNIT);

This is a procedure command; it does not return a value.

Notes: • Use Bit Set or Bit Clear to change individual bits in an integer variable.
S-30 ioControl Command Reference

S

Set I/O Unit Scratch Pad Bits from MOMO Mask
I/O Unit—Scratch Pad Action

Function: To write bits to the Scratch Pad area of a local or remote SNAP Ultimate or Ethernet brain.

Typical Use: For peer-to-peer communication. Strategy data can be stored in the Scratch Pad area and
retrieved by a peer on the network.

Details: • Use this command to store the data in the Scratch Pad area, and then use Get I/O Unit
Scratch Pad Bits to retrieve it.

• To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

Arguments:

Standard
Example:

OptoScript
Example:

SetIoUnitScratchPadBitsFromMomo(I/O Unit, Must-on Mask, Must-off Mask)
Status = SetIoUnitScratchPadBitsFromMomo(UIO_B, MyOnMask, MyOffMask);

This is a function command; it returns one of the status codes listed below.

Notes: • It is best to use 64-bit values for Argument 2 and Argument 3. ioControl and OptoScript will
convert a 32-bit value to 64 bits and then use the 64-bit value. Because both integer 32 and
integer 64 values are signed integers, an integer 32 value of 0xAAAAAAAA will be
converted to 0xFFFFFFFFAAAAAAAA.

• The I/O unit Scratch Pad area is for general-purpose use and is accessible to any network
device (for example, another Ultimate I/O unit or an application running on a PC) that can
connect to the I/O unit’s command processor port (usually port 2001). Be aware of all
devices that have access to the area, and make sure that their reads and writes are
synchronized so that correct data is available to all devices when needed.

• See “I/O Unit—Scratch Pad Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = success
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Must-on Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
Must-off Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 4
Put Status in
Integer 32 Variable

Set I/O Unit Scratch Pad Bits from MOMO Mask
I/O Unit UIO_B SNAP-UP1-ADS

Must-on Mask MyOnMask Integer 64 Variable
Must-off Mask MyOffMask Integer 64 Variable
Put Status in Status Integer 32Variable
ioControl Command Reference S-31

-58 = No data received. I/O unit may be turned off or unreachable.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get I/O Unit Scratch Pad Bits (page G-69), Set I/O Unit Scratch Pad Float Element (page S-32),
Set I/O Unit Scratch Pad Float Table (page S-34), Set I/O Unit Scratch Pad Integer 32 Element
(page S-36), Set I/O Unit Scratch Pad Integer 32 Table (page S-38), Set I/O Unit Scratch Pad String
Element (page S-40), Set I/O Unit Scratch Pad String Table (page S-41)

Set I/O Unit Scratch Pad Float Element
I/O Unit—Scratch Pad Action

Function: To write a float to the Scratch Pad area of a local or remote SNAP Ultimate brain.

Typical Use: For peer-to-peer communication. Strategy variable data can be stored in the brain’s Scratch Pad
area and retrieved by a peer on the network.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• You can use this command to store the variable data in the Scratch Pad area, and then use
Get I/O Unit Scratch Pad Float Element or Get I/O Unit Scratch Pad Float Table to retrieve it.

• The float area of the Scratch Pad is a table containing 10,240 elements (index numbers
0–10239). Enter the index number of the element you want to set in Argument 2.

Arguments:

Standard
Example:

OptoScript
Example:

SetIoUnitScratchPadFloatElement(I/O Unit, Index, From)
Status = SetIoUnitScratchPadFloatElement(UIO_B, 26, 1.2);

This is a function command; it returns one of the status codes listed below.

Notes: • To write more than one float value to the Scratch Pad area in a single command, use Set I/O
Unit Scratch Pad Float Table.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Index
Integer 32 Literal
Integer 32 Variable

Argument 3
From
Float Literal
Float Variable

Argument 4
Put Status in
Integer 32 Variable

Set I/O Unit Scratch Pad Float Element
I/O Unit UIO_B SNAP-UP1-ADS

Index 26 Integer 32 Literal
From 1.2 Float Literal

Put Status in Status Integer 32 Variable
S-32 ioControl Command Reference

S

• The I/O unit Scratch Pad area is for general-purpose use and is accessible to any network

device (for example, another Ultimate I/O unit or an application running on a PC) that can
connect to the I/O unit’s command processor port (usually port 2001). Be aware of all
devices that have access to the area, and make sure that their reads and writes are
synchronized so that correct data is available to all devices when needed.

• Since this command accesses a table on an I/O unit, it requires communication to that unit,
so it will take more time than just moving data between tables in a strategy.

• See “I/O Unit—Scratch Pad Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = success
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-58 = No data received. I/O unit may be turned off or unreachable.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get I/O Unit Scratch Pad Float Element (page G-70), Set I/O Unit Scratch Pad Float Table
(page S-34), Set I/O Unit Scratch Pad Integer 32 Element (page S-36), Set I/O Unit Scratch Pad
Integer 32 Table (page S-38), Set I/O Unit Scratch Pad String Element (page S-40), Set I/O Unit
Scratch Pad String Table (page S-41), Set I/O Unit Scratch Pad Bits from MOMO Mask
(page S-31)
ioControl Command Reference S-33

Set I/O Unit Scratch Pad Float Table
I/O Unit—Scratch Pad Action

Function: To write a series of float values to the Scratch Pad area of a local or remote SNAP Ultimate brain.

Typical Use: For peer-to-peer communication. Strategy variable data can be stored in the brain’s Scratch Pad
area and retrieved by a peer on the network.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• You can use this command to place variable data in the Scratch Pad area, and then use Get
I/O Unit Scratch Pad Float Element or Get I/O Unit Scratch Pad Float Table to retrieve it.

• The float area of the Scratch Pad is a table containing 10,240 elements (index numbers
0–10239). Enter the number of elements you want to set in the Scratch Pad area in
Argument 2 and the index number of the starting element in Argument 3. In Argument 4
enter the starting index of the table you are writing from; in Argument 5 enter the name of
the table.

Arguments:

Standard
Example:

OptoScript
Example:

SetIoUnitScratchPadFloatTable(I/O Unit, Length, To Index, From Index, From
Table)
Status = SetIoUnitScratchPadFloatTable(UIO_B, 64, 0, 0, MyFloatTable);

This is a function command; it returns one of the status codes listed below.

Notes: • To write a single float value to the Scratch Pad area, use Set I/O Unit Scratch Pad Float
Element.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Length
Integer 32 Literal
Integer 32 Variable

Argument 3
To Index
Integer 32 Literal
Integer 32 Variable

Argument 4
From Index
Integer 32 Literal
Integer 32 Variable

Argument 5
From Table
Float Table

Argument 6
Put Status in
Integer 32 Variable

Set I/O Unit Scratch Pad Float Table
I/O Unit UIO_B SNAP-UP1-ADS
Length 64 Integer 32 Literal

To Index 0 Integer 32 Literal
From Index 0 Integer 32 Literal
From Table MyFloatTable Float Table

Put Status in Status Integer 32 Variable
S-34 ioControl Command Reference

S

• The I/O unit Scratch Pad area is for general-purpose use and is accessible to any network

device (for example, another Ultimate I/O unit or an application running on a PC) that can
connect to the I/O unit’s command processor port (usually port 2001). Be aware of all
devices that have access to the area, and make sure that their reads and writes are
synchronized so that correct data is available to all devices when needed.

• Since this command accesses a table on an I/O unit, it requires communication to that unit,
so it will take more time than just moving data between tables in a strategy.

• See “I/O Unit—Scratch Pad Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = success
-3 = Invalid length. Argument 3 (Length) less than 0 or greater than 3072.
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-58 = No data received. I/O unit may be turned off or unreachable.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get I/O Unit Scratch Pad Float Table (page G-72), Set I/O Unit Scratch Pad Float Element
(page S-32), Set I/O Unit Scratch Pad Bits from MOMO Mask (page S-31), Set I/O Unit Scratch
Pad Integer 32 Element (page S-36), Set I/O Unit Scratch Pad Integer 32 Table (page S-38), Set
I/O Unit Scratch Pad String Element (page S-40), Set I/O Unit Scratch Pad String Table
(page S-41)
ioControl Command Reference S-35

Set I/O Unit Scratch Pad Integer 32 Element
I/O Unit—Scratch Pad Action

Function: To write an integer 32 to the Scratch Pad area of a local or remote SNAP Ultimate brain.

Typical Use: For peer-to-peer communication. Strategy variable data can be stored in the brain’s Scratch Pad
area and retrieved by a peer on the network.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• You can use this command to store the variable data in the Scratch Pad area, and then use
Get I/O Unit Scratch Pad Integer 32 Element to retrieve it.

• The integer 32 area of the Scratch Pad is a table containing 10,240 elements (index numbers
0–10239). Enter the index number of the element you want to set in Argument 2.

Arguments:

Standard
Example:

OptoScript
Example:

SetIoUnitScratchPadInt32Element(I/O Unit, Index, From)
Status = SetIoUnitScratchPadInt32Element(UIO_B, 26, 99);

This is a function command; it returns one of the status codes listed below.

Notes: • To write more than one integer 32 value to the Scratch Pad area in a single command,
use Set I/O Unit Scratch Pad Integer 32 Table.

• The I/O unit Scratch Pad area is for general-purpose use and is accessible to any network
device (for example, another Ultimate I/O unit or an application running on a PC) that can
connect to the I/O unit’s command processor port (usually port 2001). Be aware of all
devices that have access to the area, and make sure that their reads and writes are
synchronized so that correct data is available to all devices when needed.

• Since this command accesses a table on an I/O unit, it requires communication to that unit,
so it will take more time than just moving data between tables in a strategy.

• See “I/O Unit—Scratch Pad Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = success

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Index
Integer 32 Literal
Integer 32 Variable

Argument 3
From
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status in
Integer 32 Variable

Set I/O Unit Scratch Pad Integer 32 Element
I/O Unit UIO_B SNAP-UP1-ADS

Index 26 Integer 32 Literal
From 99 Integer 32 Literal

Put Status in Status Integer 32 Variable
S-36 ioControl Command Reference

S

-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-58 = No data received. I/O unit may be turned off or unreachable.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get I/O Unit Scratch Pad Integer 32 Element (page G-74), Set I/O Unit Scratch Pad Integer 32
Table (page S-38), Set I/O Unit Scratch Pad Float Element (page S-32), Set I/O Unit Scratch Pad
Float Table (page S-34), , Set I/O Unit Scratch Pad String Element (page S-40), Set I/O Unit
Scratch Pad String Table (page S-41), Set I/O Unit Scratch Pad Bits from MOMO Mask
(page S-31)
ioControl Command Reference S-37

Set I/O Unit Scratch Pad Integer 32 Table
I/O Unit—Scratch Pad Action

Function: To write a series of integer 32 values to the Scratch Pad area of a local or remote SNAP Ultimate
brain.

Typical Use: For peer-to-peer communication. Strategy variable data can be stored in the brain’s Scratch Pad
area and retrieved by a peer on the network.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• You can use this command to store the variable data in the Scratch Pad area, and then use
Get I/O Unit Scratch Pad Integer 32 Element or Get I/O Unit Scratch Pad Integer 32 Table to
retrieve it.

• The integer 32 area of the Scratch Pad is a table containing 10,240 elements (index numbers
0–10239). Enter the number of elements you want to set in Argument 2 and the index
number of the starting element in Argument 3.

Arguments:

Standard
Example:

OptoScript
Example:

SetIoUnitScratchPadInt32Table(I/O Unit, Length, To Index, From Index, From
Table)
Status = SetIoUnitScratchPadInt32Table(UIO_B, 64, 0, 0, MyInt32Table);

This is a function command; it returns one of the status codes listed below.

Notes: • To write a single integer 32 value to the Scratch Pad area, use Set I/O Unit Scratch Pad
Integer 32 Element.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Length
Integer 32 Literal
Integer 32 Variable

Argument 3
To Index
Integer 32 Literal
Integer 32 Variable

Argument 4
From Index
Integer 32 Literal
Integer 32 Variable

Argument 5
From Table
Integer 32 Table

Argument 6
Put Status in
Integer 32 Variable

Set I/O Unit Scratch Pad Integer 32 Table
I/O Unit UIO_B SNAP-UP1-ADS
Length 64 Integer 32 Literal

To Index 0 Integer 32 Literal
From Index 0 Integer 32 Literal
From Table MyInt32Table Integer 32 Table

Put Status in Status Integer 32 Variable
S-38 ioControl Command Reference

S

• The I/O unit Scratch Pad area is for general-purpose use and is accessible to any network

device (for example, another Ultimate I/O unit or an application running on a PC) that can
connect to the I/O unit’s command processor port (usually port 2001). Be aware of all
devices that have access to the area, and make sure that their reads and writes are
synchronized so that correct data is available to all devices when needed.

• Since this command accesses a table on an I/O unit, it requires communication to
that unit, so it will take more time than just moving data between tables in a strategy.

• See “I/O Unit—Scratch Pad Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = success
-3 = Invalid length. Argument 3 (Length) less than 0 or greater than 3072.
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-58 = No data received. I/O unit may be turned off or unreachable.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get I/O Unit Scratch Pad Integer 32 Table (page G-76), Set I/O Unit Scratch Pad Integer 32
Element (page S-36), Set I/O Unit Scratch Pad Float Element (page S-32), Set I/O Unit Scratch Pad
Float Table (page S-34), , Set I/O Unit Scratch Pad String Element (page S-40), Set I/O Unit
Scratch Pad String Table (page S-41), Set I/O Unit Scratch Pad Bits from MOMO Mask
(page S-31)
ioControl Command Reference S-39

Set I/O Unit Scratch Pad String Element
I/O Unit—Scratch Pad Action

Function: To write a string to the Scratch Pad area of a local or remote SNAP Ultimate brain.

Typical Use: For peer-to-peer communication. Strategy variable data can be stored in the brain’s Scratch Pad
area and retrieved by a peer on the network.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• You can use this command to store the variable data in the Scratch Pad area, and then use
Get I/O Unit Scratch Pad String Element to retrieve it.

• The string area of the Scratch Pad is a table containing 64 elements (index numbers 0–63).
Enter the index number of the element you want to set in Argument 2.

• Each string element can hold 128 characters or 128 bytes of binary data.

Arguments:

Standard
Example:

OptoScript
Example:

SetIoUnitScratchPadStringElement(I/O Unit, Index, From)
Status = SetIoUnitScratchPadStringElement(UIO_B, 26, MyStringVar);

This is a function command; it returns one of the status codes listed below.

Notes: • To write more than one string value to the Scratch Pad area in a single command, use Set
I/O Unit Scratch Pad String Table.

• The I/O unit Scratch Pad area is for general-purpose use and is accessible to any network
device (for example, another Ultimate I/O unit or an application running on a PC) that can
connect to the I/O unit’s command processor port (usually port 2001). Be aware of all
devices that have access to the area, and make sure that their reads and writes are
synchronized so that correct data is available to all devices when needed.

• Since this command accesses a table on an I/O unit, it requires communication to that unit,
so it will take more time than just moving data between tables in a strategy.

• See “I/O Unit—Scratch Pad Commands” in Chapter 10 of the ioControl User’s Guide.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Index
Integer 32 Literal
Integer 32 Variable

Argument 3
From
String Literal
String Variable

Argument 4
Put Status in
Integer 32 Variable

Set I/O Unit Scratch Pad String Element
I/O Unit UIO_B SNAP-UP1-ADS

Index 26 Integer 32 Literal
From MyStringVar String Variable

Put Status in Status Integer 32 Variable
S-40 ioControl Command Reference

S

Status Codes: 0 = success

-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-58 = No data received. I/O unit may be turned off or unreachable.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get I/O Unit Scratch Pad String Element (page G-78), Set I/O Unit Scratch Pad String Table
(page S-41), Set I/O Unit Scratch Pad Float Element (page S-32), Set I/O Unit Scratch Pad Float
Table (page S-34), Set I/O Unit Scratch Pad Integer 32 Element (page S-36), Set I/O Unit Scratch
Pad Integer 32 Table (page S-38), Set I/O Unit Scratch Pad Bits from MOMO Mask (page S-31)

Set I/O Unit Scratch Pad String Table
I/O Unit—Scratch Pad Action

Function: To write series of strings to the Scratch Pad area of a local or remote SNAP Ultimate brain.

Typical Use: For peer-to-peer communication. Strategy variable data can be stored in the brain’s Scratch Pad
area and retrieved by a peer on the network.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• You can use this command to store the variable data in the Scratch Pad area, and then use
Get I/O Unit Scratch Pad String Table to retrieve it.

• The string area of the Scratch Pad is a table containing 64 elements (index numbers 0–63).
Enter the number of elements you want to set in Argument 2 and the index number of the
starting element in Argument 3.

• Each string element can hold 128 characters or 128 bytes of binary data.

Arguments: Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Length
Integer 32 Literal
Integer 32 Variable

Argument 3
To Index
Integer 32 Literal
Integer 32 Variable

Argument 4
From Index
Integer 32 Literal
Integer 32 Variable

Argument 5
From Table
String Table

Argument 6
Put Status in
Integer 32 Variable
ioControl Command Reference S-41

Standard
Example:

OptoScript
Example:

SetIoUnitScratchPadStringTable(I/O Unit, Length, To Index, From Index, From
Table)
Status = SetIoUnitScratchPadStringTable(UIO_B, 8, 0, 0, MyStringTable);

This is a function command; it returns one of the status codes listed below.

Notes: • To write a single string value to the Scratch Pad area, use Set I/O Unit Scratch Pad String
Element.

• The I/O unit Scratch Pad area is for general-purpose use and is accessible to any network
device (for example, another Ultimate I/O unit or an application running on a PC) that can
connect to the I/O unit’s command processor port (usually port 2001). Be aware of all
devices that have access to the area, and make sure that their reads and writes are
synchronized so that correct data is available to all devices when needed.

• Since this command accesses a table on an I/O unit, it requires communication to that unit,
so it will take more time than just moving data between tables in a strategy.

• See “I/O Unit—Scratch Pad Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = success
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-58 = No data received. I/O unit may be turned off or unreachable.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Get I/O Unit Scratch Pad String Table (page G-80), Set I/O Unit Scratch Pad String Element
(page S-40), Set I/O Unit Scratch Pad Float Element (page S-32), Set I/O Unit Scratch Pad Float
Table (page S-34), Set I/O Unit Scratch Pad Integer 32 Element (page S-36), Set I/O Unit Scratch
Pad Integer 32 Table (page S-38), Set I/O Unit Scratch Pad Bits from MOMO Mask (page S-31)

Set I/O Unit Scratch Pad String Table
I/O Unit UIO_B SNAP-UP1-ADS
Length 8 Integer 32 Literal

To Index 0 Integer 32 Literal
From Index 0 Integer 32 Literal
From Table MyStringTable String Table

Put Status in Status Integer 32 Variable
S-42 ioControl Command Reference

S

Set Minutes
Time/Date Action

Function: To set the minutes value (0 through 59) in the control engine’s real-time clock/calendar.

Typical Use: To set the minutes value from an ioControl program.

Detail: • The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
• Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and 11:59:00

p.m. = 23:59:00.
• If the desired time to set is 2:35 p.m. (14:35:00), the To parameter (Argument 1) should

contain the value 35.
• Executing this command would set the minutes value in the control engine’s real-time

clock/calendar.
• The control engine’s real-time clock/calendar will automatically increment the time and date

after they are set.
• All erroneous values for minutes are ignored.

Arguments:

Standard
Example:

OptoScript
Example:

SetMinutes(To)
SetMinutes(MINUTES);

This is a procedure command; it does not return a value.

Note: Do not issue this command continuously.

See Also: Get Day (page G-49), Get Day of Week (page G-50), Get Hours (page G-63), Get Month
(page G-97), Get Seconds (page G-135), Get Year (page G-145), Set Hours (page S-25), Set Day
(page S-17), Set Month (page S-57), Set Seconds (page S-78), Set Year (page S-89)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set Minutes
To MINUTES Integer 32 Variable
ioControl Command Reference S-43

Set Mistic PID Control Word
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Function: Change the bits that control the PID operation.

Typical Use: To alter the PID configuration.

Details: • Bit assignments:

• To set any bit(s) put a 1 for each bit to set in the On Mask parameter. To clear any bit(s) put
a 1 for each bit to clear in the Off Mask parameter. All mask bit positions with zeros will
leave the corresponding PID control word bit unchanged.

Arguments:

Standard
Example:

OptoScript
Example:

SetMisticPidControlWord(On-Mask, Off-Mask, For PID Loop)
SetMisticPidControlWord(PID_CTRL_SET, PID_CTRL_CLEAR, EXTRUDER_ZONE08);

This is a procedure command; it does not return a value.

Note: The PID Control Word is actually a 16-bit number. The four most significant bits are reserved.

See Also: Get Mistic PID Control Word (page G-87)

11 1 = Use SqRt value from input point.
10 1 = Setpoint was above high clamp. Write zero to clear.
9 1 = Setpoint was below low clamp. Write zero to clear.
8 1 = Input point under-range. Write zero to clear.
7 1 = Loop active. 0 = Loop stopped.
6 1 = Loop in auto mode. 0 = Loop in manual mode.
5 1 = Output active. 0 = Output disconnected.
4 1 = Output tracks input in manual mode. 0 = no action.
3 1 = Setpoint tracks input in manual mode. 0 = no action.
2 1 = Input from host. 0 = Input from point.
1 1 = Setpoint from point. 0 = Setpoint from host.
0 1 = Use filtered value from input point. Must have filtering

active on the input point.
0 = Use current value of input point.

Argument 1
On Mask
Integer 32 Literal
Integer 32 Variable

Argument 2
Off Mask
Integer 32 Literal
Integer 32 Variable

Argument 3
For PID Loop
PID Loop

Set Mistic PID Control Word
On Mask PID_CTRL_SET Integer 32 Variable
Off Mask PID_CTRL_CLEAR Integer 32 Variable

For PID Loop EXTRUDER_ZONE08 PID Loop
S-44 ioControl Command Reference

S

Set Mistic PID D Term
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Function: To change the derivative value of the PID.

Typical Use: To improve PID performance in systems with long delays.

Details: • The derivative is used to determine how much effect the change-in-slope of the PID input
should have on the PID output.

• Derivative is useful in predicting the future value of the PID input based on the change in
trend of the PID input as recorded during the last three scan periods.

• Derivative is used in systems with long delays between the time that the PID output changes
and the time that the PID input responds to the change.

• Too much derivative results in excessive amounts of PID output change.
• Too little derivative results in a PID output that is always out of phase with the PID input in

systems with long delays.

Arguments:

Standard
Example:

OptoScript
Example:

SetMisticPidDTerm(To, On PID Loop)
SetMisticPidDTerm(D_TERM_VALUE, HEATER_3);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Leave the derivative at zero unless you are sure you need it and until the gain and integral

have been determined.
• The derivative is multiplied by the gain. Hence, for example, if the gain is doubled, you may

wish to cut the derivative in half to keep its effect the same.
• Typical derivative values range from 0.001 to 20.
• Use sparingly. A little derivative goes a long way!

Dependencies: • The P term (gain) must not be zero.
• Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit.

See Also: Enable Communication to Mistic PID Loop (page E-5)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On PID Loop
PID Loop

Set Mistic PID D Term
To D_TERM_VALUE Float Variable

On PID Loop HEATER_3 PID Loop
ioControl Command Reference S-45

Set Mistic PID I Term
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Function: To change the integral value of the PID.

Typical Use: To improve PID performance in systems with steady-state errors.

Details: • The integral is used to reduce the error between the PID setpoint and the PID input to zero
under steady-state conditions. Its value determines how much the error affects the PID
output.

• Always use a positive integral value. Do not use zero.
• Too much integral results in excessive amounts of PID output change.
• Too little integral results in long lasting errors between the PID input and the PID setpoint.

Arguments:

Standard
Example:

OptoScript
Example:

SetMisticPidITerm(To, On PID Loop)
SetMisticPidITerm(I_TERM_VALUE, HEATER_3);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Use an initial value of 1.0 until a better value is determined.
• The integral is multiplied by the gain. Hence, for example, if the gain is doubled, you may

wish to cut the integral in half to keep its effect the same.
• Typical integral values range from 0.1 to 20.

Dependencies: • P term (gain) must not be zero.
• Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit.

See Also: Enable Communication to Mistic PID Loop (page E-5)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On PID Loop
PID Loop

Set Mistic PID I Term
To I_TERM_VALUE Float Variable

On PID Loop HEATER_3 PID Loop
S-46 ioControl Command Reference

S

Set Mistic PID Input
PID—Mistic Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To send an input value (also known as the process variable) to the PID when its input does not
come from an analog input point on the same I/O unit.

Typical Use: To get an input from another I/O unit and forward it to the PID.

Details: Use this command based on a timed interval. For example, if the PID scan rate is 1 second, send
the input value to the PID approximately every second (anywhere from 0.8 seconds to 1.0 seconds
should be adequate).

Arguments:

Standard
Example:

OptoScript
Example:

SetMisticPidInput(PID Loop, Input)
SetMisticPidInput(HEATER_3, PID_INPUT_VALUE);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Do not send the input value to the PID less frequently than the PID scan rate, as it will

adversely affect the PID performance.

Dependencies: • You must configure the PID input to be from Host.
• Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to Mistic PID Loop (page E-5), Get Mistic PID Input (page G-90)

Argument 1
PID Loop
PID Loop

Argument 2
Input
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set Mistic PID Input
 PID Loop HEATER_3 PID Loop

Input PID_INPUT_VALUE Float Variable
ioControl Command Reference S-47

Set Mistic PID Mode to Auto
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Function: To change the mode of the PID to auto.

Typical Use: To put the PID in auto mode from manual mode.

Details: While in auto mode, the PID output functions normally.

Arguments:

Standard
Example:

OptoScript
Example:

SetMisticPidModeToAuto(On PID Loop)
SetMisticPidModeToAuto(HEATER_3);

This is a procedure command; it does not return a value.

Notes: • Use Set PID Setpoint after using this command to restore the PID setpoint to its original
value. This assumes that “setpoint tracking” is enabled (as it is by factory default) and that
the original setpoint was saved prior to switching to manual mode.

• Even when the PID is in auto mode, the PID output can be changed manually. Use the Move
command, Debug mode, or ioDisplay to write directly to the PID output analog point. The
new PID output value will be the starting value used at the end of the next PID scan period.
This procedure can be helpful in presetting the PID output where it needs to be.

Dependencies: • Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit.

See Also: Enable Communication to Mistic PID Loop (page E-5), Set Mistic PID Mode to Manual (page S-49)

Argument 1
On PID Loop
PID Loop

Set Mistic PID Mode to Auto
On PID Loop HEATER_3 PID Loop
S-48 ioControl Command Reference

S

Set Mistic PID Mode to Manual
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Function: To change the mode of the PID to manual.

Typical Use: To put the PID in manual mode for maintenance, for testing, or simply to turn it off.

Details: • While in manual mode, the PID output is not updated by the PID calculation. Instead, it
retains its last value.

• To change the PID output value, wait at least 10 milliseconds; then use the Move command,
Debug mode, or ioDisplay to write directly to the PID output analog point. The new PID
output value will be the starting value when the PID is changed to auto mode.

• While in manual mode, the PID setpoint is changed to match the PID input value. Although
this provides for a “bumpless transfer” when switching back to auto mode, the original PID
setpoint is lost. This feature can be disabled by changing the PID control word. See the
Mistic Analog and Digital Commands Manual (Opto 22 form 270) or consult Opto 22 Product
Support.

Arguments:

Standard
Example:

OptoScript
Example:

SetMisticPidModeToManual(On PID Loop)
SetMisticPidModeToManual(HEATER_3);

This is a procedure command; it does not return a value.

Notes: Use Get PID Setpoint first to save the PID setpoint to a float variable.

Dependencies: • Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit.

See Also: Enable Communication to Mistic PID Loop (page E-5), Set Mistic PID Mode to Auto (page S-48)

Argument 1
On PID Loop
PID Loop

Set Mistic PID Mode to Manual
On PID Loop HEATER_3 PID Loop
ioControl Command Reference S-49

Set Mistic PID Output Rate of Change
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Function: To change the output rate-of-change limit of the PID.

Typical Use: To slow down the PID output rate-of-change as it responds to large input or setpoint changes.

Details: • Slows the PID output rate-of-change when a large change occurs to the setpoint or
the input.

• The output rate-of-change value defines how much the PID output can change per scan
period. The units are the same as those defined for the PID output point.

• The default value is the span of the output point. This allows the PID output to move as
much as 100 percent per scan period. For example, if the PID output point is 4–20 mA, 16.00
would be returned by default, representing 100 percent of the span.

Arguments:

Standard
Example:

OptoScript
Example:

SetMisticPidOutputRateOfChange(To, On PID Loop)
SetMisticPidOutputRateOfChange(PID_RATE_LIMIT, HEATER_3);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Tune the loop before reducing the output rate-of-change.
• Set the output rate-of-change back to 100 percent before retuning the PID.
• Many additional PID loop control features are available. See the Mistic Analog and Digital

Commands Manual (Opto 22 form 270).

Dependencies: • Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit.

See Also: Enable Communication to Mistic PID Loop (page E-5), Get Mistic PID Output Rate of Change
(page G-93), Set Mistic PID Scan Rate (page S-52)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On PID Loop
PID Loop

Set Mistic PID Output Rate of Change
To PID_RATE_LIMIT Float Variable

On PID Loop HEATER_3 PID Loop
S-50 ioControl Command Reference

S

Set Mistic PID P Term
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Function: To change the gain value of the PID.

Typical Use: To tune the PID for more or less aggressive performance.

Details: • Gain is the inverse of “proportional band,” a term used in many PID applications.
• Gain is used to determine the amount of PID output response to a change in PID input or

PID setpoint.
• Always use a non-zero gain value.
• Gain has a direct multiplying effect on the integral and derivative values.
• Use a negative gain to reverse the direction of the PID output

(typical for cooling applications).
• Too much gain results in excessive amounts of PID output change.
• Too little gain results in long lasting errors between the PID input and the PID setpoint.

Arguments:

Standard
Example:

OptoScript
Example:

SetMisticPidPTerm(To, On PID Loop)
SetMisticPidPTerm(GAIN, HEATER_3);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Use an initial value of 1.0 or -1.0 until a better value is determined.
• Typical gain values range from 1 to 40 and -1 to -40.
• Use more gain to improve response to step changes.
• Use less gain to improve stability.

Dependencies: • Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit.

See Also: Enable Communication to Mistic PID Loop (page E-5)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On PID Loop
PID Loop

Set Mistic PID P Term
To GAIN Float Variable

On PID Loop HEATER_3 PID Loop
ioControl Command Reference S-51

Set Mistic PID Scan Rate
PID—Mistic Action

NOTE: This command is not for use with SNAP Ethernet I/O units or SNAP-PID-V modules.

Function: To change the scan rate (update period) for a PID calculation.

Typical Use: To adapt a PID to the characteristics of the closed-loop control system under program control.

Details: • This is the most important parameter of all the configurable PID parameters. Note that the
loop may be impossible to tune if the scan rate is significantly different from the loop dead
time.

• The value to send is in seconds. Values range from 0.1 to 6553.5 seconds in 0.1 second
increments. The default is 0.1 seconds.

• This command is useful for adapting a PID to work for either heating or cooling when the
heat mode has a different loop dead time than the cool mode.

Arguments:

Standard
Example:

OptoScript
Example:

SetMisticPidScanRate(To, On PID Loop)
SetMisticPidScanRate(Scan_Rate, Heater_3);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Do not use frequently since this will adversely affect the PID performance.

Dependencies: • Communication to the PID must be enabled for this command to send the value to the PID.
• Requires an analog multifunction I/O unit.

See Also: Enable Communication to Mistic PID Loop (page E-5)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On PID Loop
PID Loop

Set Mistic PID Scan Rate
To Scan_Rate Float Variable

On PID Loop Heater_3 PID Loop
S-52 ioControl Command Reference

S

Set Mistic PID Setpoint
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To change the setpoint value of the PID.

Typical Use: To raise or lower the setpoint or to restore it to its original value.

Details: • To use this command, the setpoint must be configured to come from Host.
• The value you send has the same engineering units as the PID input.
• The setpoint can be an analog point, even from another I/O unit.

Arguments:

Standard
Example:

OptoScript
Example:

SetMisticPidSetpoint(PID Loop, Setpoint)
SetMisticPidSetpoint(Heater_3, PID_Setpoint_Value);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Send a new setpoint value to the PID only when necessary.

Dependencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to Mistic PID Loop (page E-5), Get Mistic PID Setpoint (page G-96)

Argument 1
PID Loop
PID Loop

Argument 2
Setpoint
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set Mistic PID Setpoint
 PID Loop Heater_3 PID Loop
Setpoint Pid_Setpoint_Value Float Variable
ioControl Command Reference S-53

Set Mixed 64 I/O Unit from MOMO Masks
Deprecated

NOTE: This command has been deprecated. It is still functional, however if you are developing a
new strategy, use Set I/O Unit from MOMO Masks (page S-29) instead.

Function: To control multiple digital output points on the same 64-point mixed I/O unit simultaneously with
a single command (applies to I/O units with a SNAP-UP1-M64 brain only).

Typical Use: To efficiently control all digital outputs on a mixed 64-point rack with one command.

Details: • This command is 64 times faster than using Turn On or Turn Off 64 times.
• Updates the IVALs and XVALs for all 64 points. Affects only selected output points. Does not

affect input points.
• To turn on a point, set the respective bit in the 64-bit data field of argument 1 (the must-on

bit mask) to a value of “1.”To turn off a point, set the respective bit in the 64-bit data field of
argument 2 (the must-off bit mask) to a value of “1.” To leave a point unaffected, set its bits
to a value of 0 in both arguments 1 and 2. (Check for conflicts; if the same bit is set to 1 in
both masks, the point is turned off.)

• The least significant bit corresponds to point zero.
• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.

Arguments:

Standard
Example:

The effect of this command is illustrated below:

To save space, the example shows only the first eight points and the last eight points on the rack.
For the points shown, points 58, 57, 7, 6, and 1 will be turned on. Points 63, 61, 60, and 5 will be
turned off. Other points shown are not changed.

Argument 1
Must On Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
Must Off Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
Mixed 64 I/O Unit
SNAP-UP1-M64

Set Mixed 64 I/O Unit from MOMO Masks
Must On Mask 0x060003C0000000C2 Integer 64 Literal
Must Off Mask 0xB0F240010308A020 Integer 64 Literal

Mixed 64 I/O Unit PUMP_CTRL_UNIT SNAP-UP1-M64

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2

Must-off
Bit Mask

Binary 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

Hex B 0 2 0
S-54 ioControl Command Reference

S

OptoScript

Example:
SetMixed64IoUnitFromMomo(Must-On Mask, Must-Off Mask, Mixed 64 I/O Unit)
SetMixed64IoUnitFromMomo(0x060003C0000000C2i64, 0xB0F240010308A020i64,
PUMP_CTRL_UNIT);

This is a procedure command; it does not return a value. (Note that Integer 64 literals in
OptoScript code take an i64 suffix.)

Notes: Use Bit Set or Bit Clear to change individual bits in an integer variable.

See Also: Get I/O Unit as Binary Value (page G-65)

Set Mixed I/O Unit from MOMO Masks
Deprecated

NOTE: This command has been deprecated. It is still functional, however if you are developing a
new strategy, use Set I/O Unit from MOMO Masks (page S-29) instead.

Function: To control multiple digital output points on the same mixed I/O unit simultaneously with a single
command.

Typical Use: To efficiently control all digital outputs on a mixed I/O rack with one command.

Details: • This command is 32 times faster than using Turn On or Turn Off 32 times.
• Updates the IVALs and XVALs for all 32 digital points. Affects only selected digital output

points. Does not affect digital input points. Does not affect analog points in any position on
the rack.

• To turn on a point, set the respective bit in the 32-bit data field of argument 1 (the must-on
bit mask) to a value of “1.”To turn off a point, set the respective bit in the 32-bit data field of
argument 2 (the must-off bit mask) to a value of “1.” To leave a point unaffected, set its bits
to a value of 0 in both arguments 1 and 2. (Check for conflicts; if the same bit is set to 1 in
both masks, the point is turned off.)

• The least significant bit corresponds to point zero.
• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.

Arguments:

Standard
Example:

Argument 1
Must On Mask
Integer 32 Literal
Integer 32 Variable

Argument 2
Must Off Mask
Integer 32 Literal
Integer 32 Variable

Argument 3
Mixed I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS

Set Mixed I/O Unit from MOMO Masks
Must On Mask 0x0600C0C2 Integer 32 Variable
Must Off Mask 0xB001A020 Integer 32 Literal
Mixed I/O Unit PUMP_CTRL_UNIT SNAP-UP1-ADS
ioControl Command Reference S-55

The effect of this command is illustrated below:

To save space, the example shows only the first eight and the last eight digital points on the rack.
For the points shown, points 26, 25, 7, 6, and 1 will be turned on. Points 31, 29, 28, and 5 will be
turned off. Other points shown are not changed.

OptoScript
Example:

SetMixedIoUnitFromMomo(Must-On Mask, Must-Off Mask, Mixed I/O Unit)
SetMixedIoUnitFromMomo(PUMPS_ON_MASK, 0xB001A020, PUMP_CTRL_UNIT);

This is a procedure command; it does not return a value.

Notes: Use Bit Set or Bit Clear to change individual bits in an integer variable.

See Also: Get I/O Unit as Binary Value (page G-65)

Point Number 31 30 29 28 27 26 25 24 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2

Must-off
Bit Mask

Binary 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

Hex B 0 2 0
S-56 ioControl Command Reference

S

Set Month
Time/Date Action

Function: To set the month value (1 through 12) in the control engine’s real-time clock/calendar.

Typical Use: To set the month from an ioControl program.

Details: • The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
• If the desired month to set is March, the To parameter (Argument 1) should contain the

value 3.
• Executing this command would set the month in the control engine’s real-time

clock/calendar.
• The control engine’s real-time clock/calendar will automatically increment the time and date

after they are set.
• All erroneous month values are ignored.

Arguments:

Standard
Example:

OptoScript
Example:

SetMonth(To)
SetMonth(MONTH);

This is a procedure command; it does not return a value.

Note: Do not issue this command continuously.

See Also: Get Day (page G-49), Get Day of Week (page G-50), Get Hours (page G-63), Get Month
(page G-97), Get Seconds (page G-135), Get Year (page G-145), Set Hours (page S-25), Set Day
(page S-17), Set Minutes (page S-43), Set Seconds (page S-78), Set Year (page S-89)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set Month
To MONTH Integer 32 Variable
ioControl Command Reference S-57

Set Nth Character
String Action

Function: Changes a character within a string.

Typical Use: When building communication strings prior to sending.

Details: • The character can be written to any position from 0 up to the current string length.
• Valid range for the character is 0–255.

Arguments:

Standard
Example:

OptoScript
Example:

SetNthCharacter(To, In String, At Index)
STATUS = SetNthCharacter(62, MSG_RECEIVED, POSITION);

This is a function command; it returns one of the status codes listed below.

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• A status of zero indicates success.
• The string could initially be filled with nulls or spaces up to its declared width to avoid null

string errors.

Status Codes: 0 = Success
-42 = Invalid index value. The index was negative or greater than the string length, or the
character value is outside the range 0-255.
-45 = Null/empty string. The string being written to is empty.

See Also: Find Character in String (page F-1), Get Nth Character (page G-100)

Argument 1
To
Integer 32 Literal
Integer 32 Variable

Argument 2
In String
String Variable

Argument 3
At Index
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status In
Float Variable
Integer 32 Variable

Set Nth Character
To 62 Integer 32 Literal

In String MSG_RECEIVED String Variable
At Index POSITION Integer 32 Variable

Put Status In STATUS Integer 32 Variable
S-58 ioControl Command Reference

S

Set PID Configuration Flags
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To set or change PID configuration options within strategy logic.

Typical Use: To force output to a predetermined value or change it to manual if input goes out of range.

Details: • PID configuration options can be set using this command or when you initially configure the
PID loop in ioManager or ioControl.

• Configuration options are sent as a 32-bit integer (a mask). One or multiple options can be
chosen. Option values (in hex) are:
- 0x00000000 = Standard; no special flags.
- 0x00000001 = Enable square root of input.
- 0x00000002 = If input goes out of range, force output to a predetermined value. (Set the

predetermined value when you initially configure the PID loop.)
- 0x00000004 = If input goes out of range, switch PID to manual. (if input returns to normal

range, PID will switch back to automatic.)

Arguments:

Standard
Example:

OptoScript
Example:

SetPidConfigFlags(PID Loop, Configuration Flags)
SetPidConfigFlags(HEATER_3, PID_CONFIG_FLAGS);

This is a procedure command; it does not return a value.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to take effect.

See Also: Enable Communication to PID Loop (page E-6), Get PID Configuration Flags (page G-112)

Argument 1
PID Loop
PID Loop

Argument 2
Configuration Flags
Integer 32 Literal
Integer 32 Variable

Set PID Configuration Flags
 PID Loop HEATER_3 PID Loop

Configuration Flags PID_CONFIG_FLAGS Integer 32 Variable
ioControl Command Reference S-59

Set PID Feed Forward
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To set or change the feed forward value for the PID loop.

Typical Use: To set the value of the PID feed forward for applications requiring feed forward control.

Details: • The initial value is normally set when the PID is configured and tuned.
• For all four PID algorithms, the Feed Forward and the Feed Forward Gain values are

multiplied and then added to the output; therefore, a value of 0 for either results in no
change to the output.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidFeedForward(PID Loop, Feed Forward)
SetPidFeedForward(HEATER_3, PID_FEED_FORWARD);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Feed forward is added before output clamping and has a tuning factor.

Dependencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Feed Forward (page G-115)

Argument 1
PID Loop
PID Loop

Argument 2
Feed Forward
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Feed Forward
 PID Loop HEATER_3 PID Loop

Feed Forward PID_FEED_FORWARD Float Variable
S-60 ioControl Command Reference

S

Set PID Feed Forward Gain
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To set or change the feed forward gain of the PID output.

Typical Use: To set the value of the feed forward gain of the PID loop for applications requiring feed forward
control.

Details: • The initial value is normally set when the PID is configured and tuned.
• For all four PID algorithms, the Feed Forward and the Feed Forward Gain values are

multiplied and then added to the output; therefore, a value of 0 for either results in no
change to the output.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidFeedForwardGain(PID Loop, Feed Fwd Gain)
SetPidFeedForwardGain(HEATER_3, PID_FEED_FD_GAIN);

This is a procedure command; it does not return a value.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Feed Forward Gain (page G-116)

Argument 1
PID Loop
PID Loop

Argument 2
Feed Fwd Gain
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Feed Forward Gain
 PID Loop HEATER_3 PID Loop

Feed Fwd Gain PID_FEED_FD_GAIN Float Variable
ioControl Command Reference S-61

Set PID Forced Output When Input Over Range
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To set or change the forced value that will be sent to the PID output if the input is over the
established range.

Typical Use: To set the PID output to a known value if the input goes higher than its normal range.

Details: The PID must be in auto mode for this command to take effect.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidForcedOutputWhenInputOverRange(PID Loop, Forced Output)
SetPidForcedOutputWhenInputOverRange(HEATER_3, PID_OUTPUT_OVER_RANGE);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• A forced output when the input is out of range (either over or under) can also be set when

you configure the PID loop.

See Also: Get PID Forced Output When Input Over Range (page G-117), Set PID Forced Output When Input
Under Range (page S-63)

Argument 1
PID Loop
PID Loop

Argument 2
Forced Output
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Forced Output When Input Over Range
 PID Loop HEATER_3 PID Loop

Forced Output PID_OUTPUT_OVER_RANGE Float Variable
S-62 ioControl Command Reference

S

Set PID Forced Output When Input Under Range
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To set or change the forced value that will be sent to the PID output if the input is under the
established range.

Typical Use: To set the PID output to a known value if the input goes lower than its normal range.

Details: The PID must be in auto mode for this command to take effect.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidForcedOutputWhenInputUnderRange(PID Loop, Forced Output)
SetPidForcedOutputWhenInputUnderRange(HEATER_3, PID_OUTPUT_UNDER_RANGE);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• A forced output when the input is out of range (either over or under) can also be set when

you configure the PID loop.

See Also: Get PID Forced Output When Input Under Range (page G-118), Set PID Forced Output When Input
Over Range (page S-62)

Argument 1
PID Loop
PID Loop

Argument 2
Forced Output
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Forced Output When Input Under Range
 PID Loop HEATER_3 PID Loop

Forced Output PID_OUTPUT_UNDER_RANGE Float Variable
ioControl Command Reference S-63

Set PID Gain
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To set or change the gain value of the PID.

Typical Use: To tune the PID for more or less aggressive performance.

Details: • Gain is the inverse of “proportional band,” a term used in many PID applications. Gain is
used to determine the amount of PID output response to a change in PID input or setpoint.

• Always use a non-zero gain value.
• Use a negative gain to reverse the direction of the PID output (typical for heating

applications).
• Gain has a direct multiplying effect on the integral and derivative values. Too much gain

results in excessive amounts of PID output change; too little gain results in long-lasting
errors between the PID input and the PID setpoint.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidGain(PID Loop, Gain)
SetPidGain(Extruder_Zone08, Zone08_Gain);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Use an initial value of 1.0 or -1.0 until a better value is determined. Typical gain values range

from 1 to 40 and from -1 to -40.
• Use more gain to improved response to step changes; use less gain to improve stability.

Dependencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Gain (page G-119)

Argument 1
PID Loop
PID Loop

Argument 2
Gain
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Gain
 PID Loop Extruder_Zone08 PID Loop

Gain Zone08_Gain Float Variable
S-64 ioControl Command Reference

S

Set PID Input
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To send an input value (also known as the process variable) to the PID when its input does not
come from an analog input point on the same I/O unit.

Typical Use: To get an input from another I/O unit and forward it to the PID.

Details: Use this command based on a timed interval. For example, if the PID scan rate is 1 second, send
the input value to the PID approximately every second (anywhere from 0.8 seconds to 1.0 seconds
should be adequate).

Arguments:

Standard
Example:

OptoScript
Example:

SetPidInput(PID Loop, Input)
SetPidInput(HEATER_3, PID_INPUT_VALUE);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Do not send the input value to the PID less frequently than the PID scan rate, as it will

adversely affect the PID performance.

Dependencies: • You must configure the PID input to be from Host.
• Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Input (page G-120)

Argument 1
PID Loop
PID Loop

Argument 2
Input
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Input
 PID Loop HEATER_3 PID Loop

Input PID_INPUT_VALUE Float Variable
ioControl Command Reference S-65

Set PID Input High Range
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To set or change the highest expected value from the PID’s input.

Typical Use: To set the highest valid input from the PID.

Details: Input high range is normally set when the PID is configured, but it can be changed from a running
strategy using this command.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidInputHighRange(PID Loop, High Range)
SetPidInputHighRange(HEATER_3, PID_HIGH_RANGE);

This is a procedure command; it does not return a value.

Notes: • Input range affects the span used in the PID algorithm. It is also used in output options when
the input is out of range. See Set PID Configuration Flags.

• See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Get PID Input High Range (page G-121), Set PID Input Low Range (page S-67)

Argument 1
PID Loop
PID Loop

Argument 2
High Range
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Input High Range
 PID Loop HEATER_3 PID Loop

High Range PID_High_Range Float Variable
S-66 ioControl Command Reference

S

Set PID Input Low Range
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To set or change the lowest expected value from the PID’s input.

Typical Use: To set the lowest valid input for the PID.

Details: Input low range is normally set when the PID is configured, but it can be changed from a running
strategy using this command.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidInputLowRange(PID Loop, Low Range)
SetPidInputLowRange(HEATER_3, PID_LOW_RANGE);

This is a procedure command; it does not return a value.

Notes: • Input range affects the span used in the PID algorithm. It is also used in output options when
the input is out of range. See Set PID Configuration Flags.

• See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Get PID Input Low Range (page G-122), Set PID Input High Range (page S-66)

Argument 1
PID Loop
PID Loop

Argument 2
Low Range
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Input Low Range
 PID Loop HEATER_3 PID Loop

Low Range PID_LOW_RANGE Float Variable
ioControl Command Reference S-67

Set PID Max Output Change
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To set or change the maximum output change limit of the PID.

Typical Use: To define the maximum amount that the PID output is allowed to change per scan period, to make
sure the output ramps up (or down) rather than increasing or decreasing too quickly.

Details: • Maximum output change is normally set when the PID is configured, but it can be changed
from a running strategy using this command.

• Units are the same as those defined for the PID output point.
• The default value is the range of the output point. This setting allows the PID output to move

as much as 100 percent per scan period. For example, if the PID output point is 4–20 mA,
16.00 would be the default, representing 100 percent of the range.

• Note that the max output change limits the PID algorithm and may slow it down.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidMaxOutputChange(PID Loop, Max Change)
SetPidMaxOutputChange(HEATER_3, PID_MAX_LIMIT);

This is a procedure command; it does not return a value.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Max Output Change (page G-123), Set PID
Scan Time (page S-74)

Argument 1
PID Loop
PID Loop

Argument 2
Max Change
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Max Output Change
 PID Loop HEATER_3 PID Loop

Max Change PID_MAX_LIMIT Float Variable
S-68 ioControl Command Reference

S

Set PID Min Output Change
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To set the minimum amount of change that must occur before the PID output will change.

Typical Use: To define how much change must occur before the PID output changes, in order to avoid constant
changes that might wear out parts (such as valve linkage).

Details: • Minimum output change is normally set when the PID is configured, but it can be changed
from a running strategy using this command.

• Units are the same as those defined for the PID output channel.
• The default value is zero (no minimum). The value must be a positive number.
• The change is applied when it exceeds the minimum in either direction (up or down).

Arguments:

Standard
Example:

OptoScript
Example:

SetPidMinOutputChange(PID Loop, Min Change)
SetPidMinOutputChange(HEATER_3, PID_MIN_LIMIT);

This is a procedure command; it does not return a value.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Max Output Change (page G-123), Set PID
Scan Time (page S-74)

Argument 1
PID Loop
PID Loop

Argument 2
Min Change
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Min Output Change
 PID Loop HEATER_3 PID Loop

Min Change PID_MIN_LIMIT Float Variable
ioControl Command Reference S-69

Set PID Mode
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: Sets the auto/manual mode of the PID.

Typical Use: To change the PID from automatic to manual mode or return it to auto.

Details: • In auto mode, the PID output functions normally. In manual mode, the PID output is not
updated by the PID calculation, but retains its most recent value.

• Use these values to set auto and manual modes: auto = 0, manual = 1.
• To change the PID output value while in manual mode, use Set PID Output, Debug mode,

ioManager, or ioDisplay to write directly to the PID output analog point.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidMode(PID Loop, Mode)
SetPidMode(Extruder_Zone08, ZONE08_MODE);

This is a procedure command; it does not return a value.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

See Also: Get PID Mode (page G-125), Set PID Output (page S-71)

Argument 1
PID Loop
PID Loop

Argument 2
Mode
Integer 32 Literal
Integer 32 Variable

Set PID Mode
 PID Loop Extruder_Zone08 PID Loop

Mode ZONE08_MODE Integer 32 Variable
S-70 ioControl Command Reference

S

Set PID Output
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To set or change the output value of the PID.

Typical Use: To adjust the PID output when the PID is in manual mode.

Details: The value sent must have the same engineering units as the specified PID output channel.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidOutput(PID Loop, Output)
SetPidOutput(HEATER_3, TPO_OUTPUT);

This is a procedure command; it does not return a value.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Output (page G-126), Set PID Mode
(page S-70), Get PID Mode (page G-125)

Argument 1
PID Loop
PID Loop

Argument 2
Output
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Output
 PID Loop HEATER_3 PID Loop

Output TPO_OUTPUT Analog Output
ioControl Command Reference S-71

Set PID Output High Clamp
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To set or change the high clamp value for the PID output.

Typical Use: To change the high clamp value while the strategy is running.

Details: The output low clamp and high clamp values define the range of output for this PID loop. They
are normally set when the PID is configured but can be changed from within a running strategy
using this command.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidOutputHighClamp(PID Loop, High Clamp)
SetPidOutputHighClamp(HEATER_3, PID_HIGH_CLAMP);

This is a procedure command; it does not return a value.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Output High Clamp (page G-127), Set PID
Output Low Clamp (page S-73)

Argument 1
PID Loop
PID Loop

Argument 2
High Clamp
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Output High Clamp
 PID Loop HEATER_3 PID Loop

High Clamp PID_HIGH_CLAMP Float Variable
S-72 ioControl Command Reference

S

Set PID Output Low Clamp
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To set or change the low clamp value for the PID output.

Typical Use: To change the PID output’s low clamp value while a strategy is running.

Details: The output low clamp and high clamp values define the range of output for this PID loop. They
are normally set when the PID is configured but can be changed from within a running strategy
using this command.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidOutputLowClamp(PID Loop, Low Clamp)
SetPidOutputLowClamp(HEATER_3, PID_LOW_CLAMP);

This is a procedure command; it does not return a value.

Notes: See “PID Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Output Low Clamp (page G-128), Set PID
Output High Clamp (page S-72)

Argument 1
PID Loop
PID Loop

Argument 2
Low Clamp
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Output Low Clamp
 PID Loop HEATER_3 PID Loop

Low Clamp PID_LOW_CLAMP Float Variable
ioControl Command Reference S-73

Set PID Scan Time
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To set or change the PID calculation interval (the update period or scan rate).

Typical Use: To adapt a PID to the characteristics of the closed-loop control system under program control.

Details: • This is the most important parameter of all the configurable PID parameters. In order to tune
the PID, scan time should be greater than system lag (the time it takes for the controller
output to have a measurable effect on the system). Also consider other PIDs and tasks on
the brain competing for processing power.

• The value to send is in seconds. The default is 0.1 seconds.
• This command is useful for adapting a PID to work for either heating or cooling when the

heating mode has a different dead time than the cooling mode.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidScanTime(PID Loop, Scan Time)
SetPidScanTime(Extruder_Zone08, Zone08_Scan_Time);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Frequent use of this command can adversely affect the PID performance.

Dependencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Scan Time (page G-129),

Argument 1
PID Loop
PID Loop

Argument 2
Scan Time (sec)
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Scan Time
 PID Loop Extruder_Zone08 PID Loop

Scan Time (sec) Zone08_Scan_Time Float Variable
S-74 ioControl Command Reference

S

Set PID Setpoint
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To change the setpoint value of the PID.

Typical Use: To raise or lower the setpoint or to restore it to its original value.

Details: • To use this command, the setpoint must be configured to come from Host.
• The value you send has the same engineering units as the PID input.
• The setpoint can be an analog point, even from another I/O unit.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidSetpoint(PID Loop, Setpoint)
SetPidSetpoint(Heater_3, PID_Setpoint_Value);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Send a new setpoint value to the PID only when necessary.

Dependencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Setpoint (page G-130)

Argument 1
PID Loop
PID Loop

Argument 2
Setpoint
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Setpoint
 PID Loop Heater_3 PID Loop
Setpoint Pid_Setpoint_Value Float Variable
ioControl Command Reference S-75

Set PID Tune Derivative
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To change the derivative value of the PID.

Typical Use: To improve performance in systems with long delays between when the PID output changes and
when the PID input responds to the change.

Details: • The derivative is used to determine how much effect the change-in-slope of the PID input
should have on the PID output. It is useful in predicting the future value of the PID input
based on the change in trend of the PID input as recorded during the last three scan periods

• Too high a derivative value results in excessive amounts of PID output change. In systems
with long delays, too low a derivative value results in a PID output that is always out of
phase with the PID input.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidTuneDerivative(PID Loop, Tune Derivative)
SetPidTuneDerivative(Extruder_Zone08, Zone08_Derivative);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Leave the derivative at zero unless you are sure you need it and until the gain and integral

have been determined. Use sparingly; a little derivative goes a long way.
• Since derivative is applied only to the process variable, not to the setpoint, the setpoint can

be changed without causing spikes in the derivative term.

Depedencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Tune Derivative (page G-132)

Argument 1
PID Loop
PID Loop

Argument 2
Tune Derivative
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Tune Derivative
 PID Loop Extruder_Zone08 PID Loop

Tune Derivative Zone08_Derivative Float Variable
S-76 ioControl Command Reference

S

Set PID Tune Integral
PID—Ethernet Action

NOTE: This command is used for PID loops in ioControl; it is not for use with the SNAP-PID-V
module.

Function: To change the Integral value of the PID.

Typical Use: To improve PID performance in systems with steady-state errors.

Details: • The integral is used to reduce the error between the PID setpoint and the PID input to zero
under steady-state conditions. Its value determines how much the error affects the PID
output.

• Too high an integral value results in excessive PID output change; too low an integral value
results in long-lasting errors between the PID input and the PID setpoint.

Arguments:

Standard
Example:

OptoScript
Example:

SetPidTuneIntegral(From PID Loop, Tune Integral)
SetPidTuneIntegral(Extruder_Zone08, Zone08_Integral);

This is a procedure command; it does not return a value.

Notes: • See “PID Commands” in Chapter 10 of the ioControl User’s Guide.
• Use an initial value of 1.0 until a better value is determined. Typical integral values range

from 0.1 to 20.
• This PID prevents integral windup by back calculating the integral without the derivative

term.

Depedencies: Communication to the PID must be enabled for this command to send the value to the PID.

See Also: Enable Communication to PID Loop (page E-6), Get PID Tune Integral (page G-133)

Argument 1
PID Loop
PID Loop

Argument 2
Tune Integral
Analog Input
Analog Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set PID Tune Integral
 PID Loop Extruder_Zone08 PID Loop

Tune Integral Zone08_Integral Float Variable
ioControl Command Reference S-77

Set Seconds
Time/Date Action

Function: To set the seconds value (0 through 59) in the control engine’s real-time clock/calendar.

Typical Use: To set the seconds from an ioControl program.

Details: • The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
• Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00, and 11:59:00

p.m. = 23:59:00.
• If the desired time to set is 2:35:26 p.m., then the To parameter (Argument 1) should contain

the value 26.
• Executing this command would set the seconds value in the control engine’s real-time

clock/calendar.
• The control engine’s real-time clock/calendar will automatically increment the time and date

after they are set.
• All erroneous values for seconds are ignored.

Arguments:

Standard
Example:

OptoScript
Example:

SetSeconds(To)
SetSeconds(SECONDS);

This is a procedure command; it does not return a value.

Note: Do not issue this command continuously.

See Also: Get Day (page G-49), Get Day of Week (page G-50), Get Hours (page G-63), Get Minutes
(page G-86), Get Month (page G-97), Get Seconds (page G-135), Get Year (page G-145), Set
Hours (page S-25), Set Day (page S-17), Set Minutes (page S-43), Set Month (page S-57), Set
Year (page S-89)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set Seconds
To SECONDS Integer 32 Variable
S-78 ioControl Command Reference

S

Set Simple 64 I/O Unit from MOMO Masks
Deprecated

NOTE: This command has been deprecated. It is still functional, however if you are developing a
new strategy, use Set I/O Unit from MOMO Masks (page S-29) instead.

Function: To control multiple digital output points on the same 64-point I/O unit simultaneously with a
single command (applies to I/O units with a SNAP-ENET-S64 brain only).

Typical Use: To efficiently control all digital outputs on a SNAP Simple I/O 64-point rack with one command.

Details: • This command is 64 times faster than using Turn On or Turn Off 64 times.
• Updates the IVALs and XVALs for all 64 points. Affects only selected output points. Does not

affect input points.
• To turn on a point, set the respective bit in the 64-bit data field of argument 1 (the must-on

bit mask) to a value of “1.”To turn off a point, set the respective bit in the 64-bit data field of
argument 2 (the must-off bit mask) to a value of “1.” To leave a point unaffected, set its bits
to a value of 0 in both arguments 1 and 2. (Check for conflicts; if the same bit is set to 1 in
both masks, the point is turned off.)

• The least significant bit corresponds to point zero.
• If a specific point is disabled or if the entire I/O unit is disabled, only the internal values

(IVALs) will be written.

Arguments:

Standard
Example:

The effect of this command is illustrated below:

To save space, the example shows only the first eight points and the last eight points on the rack.
For the points shown, points 58, 57, 7, 6, and 1 will be turned on. Points 63, 61, 60, and 5 will be
turned off. Other points shown are not changed.

Argument 1
Must On Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
Must Off Mask
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
Simple 64 I/O Unit
SNAP-ENET-S64

Set Simple 64 I/O Unit from MOMO Masks
Must On Mask 0x060003C0000000C2 Integer 64 Literal
Must Off Mask 0xB0F240010308A020 Integer 64 Literal

Simple 64 I/O Unit PUMP_CTRL_UNIT SNAP-ENET-S64

Point Number 63 62 61 60 59 58 57 56 7 6 5 4 3 2 1 0

Must-on
Bit Mask

Binary 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0

Hex 0 6 C 2

Must-off
Bit Mask

Binary 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

Hex B 0 2 0
ioControl Command Reference S-79

OptoScript
Example:

SetSimple64IoUnitFromMomo(Must-On Mask, Must-Off Mask, Simple 64 I/O Unit)
SetSimple64IoUnitFromMomo(0x060003C0000000C2i64, 0xB0F240010308A020i64,
PUMP_CTRL_UNIT);

This is a procedure command; it does not return a value. (Note that Integer 64 literals in
OptoScript code take an i64 suffix.)

Notes: Use Bit Set or Bit Clear to change individual bits in an integer variable.

See Also: Get I/O Unit as Binary Value (page G-65)
S-80 ioControl Command Reference

S

Set Target Address State
I/O Unit Action

Function: To control which target addresses in a redundant system should be enabled on an I/O unit.

Typical Use: To control which network is used for a specific I/O unit in a redundant system.

Details: • A target address is the IP address of an Ethernet interface on an I/O unit.
• In a redundant network architecture, you can assign two target addresses to an I/O unit. In

ioControl these are called the Primary Address and the Secondary Address. By default, the
Primary Address is used, but the server will switch to the Secondary Address if the primary
address is not available.

• Each target address has an enabled state and an active state. If both target addresses are
enabled, they are available to be used. However, only one address can be used at a given
time, so there can only be one active address.

• Use Argument 1 to enable one or both addresses.
• Use Argument 2 to disable one or both addresses.
• Use Argument 3 to make one address active.
• Use Argument 4 to designate the I/O unit type.
• Only the last bit of the 32-bit data field is used. Therefore, for arguments 1, 2, and 3 you can

use the integers 0, 1, 2, and 3 to indicate the following:
0=No change
1=Primary Target Address
2=Secondary Target Address
3=Primary and Secondary Target Addresses

Arguments:

Standard
Example:

This example assumes that there are redundant networks. It enables the secondary address,
disables the primary address, and makes the secondary address active.

OptoScript
Example:

SetTargetAddressState(Must-On Mask, Must-Off Mask, Active Mask, I/O Unit)
SetTargetAddressState(2, 1, 2, UNIT);

Argument 1
Must On Mask
Integer 32 Literal
Integer 32 Variable

Argument 2
Must Off Mask
Integer 32 Literal
Integer 32 Variable

Argument 3
Active Mask
Integer 32 Literal
Integer 32 Variable

Argument 4
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-ENET-S64
SNAP-UP1-M64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Set Target Address States
Must On Mask 2 Integer 32 Literal
Must Off Mask 1 Integer 32 Literal

Active Mask 2 Integer 32 Literal
I/O Unit UNIT SNAP-UP1-ADS
ioControl Command Reference S-81

This is a procedure command; it does not return a value.

Notes: • See “I/O Unit Commands “ in Chapter 10 of the ioControl User’s Guide.
• Arguments 1 and 2 (the Must On Mask and the Must Off Mask) together comprise the

enable mask. You can use the enable mask in the following combinations:

• Argument 3 makes one address active or both addresses inactive as follows:

• A fully redundant system may also include ioDisplay clients and OptoOPCServers. These
commands only deal with the control engine communicating with I/O units. ioDisplay and
OptoOPCServer have their own mechanism for controlling their use of the network.

See Also: Set All Target Address States (page S-5), Get Target Address State (page G-141)

To do this: Must On Mask: Must Off Mask:
Enable both addresses 3 0
Enable Primary 1 0
Enable Secondary 2 0
Enable only Primary 1 2
Enable only Secondary 2 1
Disable Primary 0 1
Disable Secondary 0 2
Disable both addresses 0 3

To do this: Active Mask:
Make both addresses inactive 0
Activate Primary 1
Activate Secondary 2
S-82 ioControl Command Reference

S

Set Time
Time/Date Action

Function: To set the time in the control engine’s real-time clock/calendar from a string variable.

Typical Use: To set the time from an ioControl program.

Details: • The From parameter (Argument 1) can be a constant or string variable, although a string
variable is preferred.

• Time is in 24-hour format. For example, 8 a.m. = 08:00:00, 1 p.m. = 13:00:00,
and 11:59:00 p.m. = 23:59:00.

• If the desired time to set is 2:35:00 p.m., the From parameter (Argument 1) should contain
the string “14:35:00.”

• Executing this command would set the time value in the control engine’s real-time
clock/calendar.

• The control engine’s real-time clock/calendar will automatically increment the time and date
after they are set.

• All erroneous time strings are ignored.

Arguments:

Standard
Example:

OptoScript
Example:

SetTime(To)
SetTime(TIME_STRING);

This is a procedure command; it does not return a value.

Notes: • To change the time, use an integer variable as a change trigger. Set the trigger variable True
after the time string has the desired value. When the trigger is True, the program executes
this command, then sets the trigger variable False.

• The control engine’s real-time clock/calendar will automatically increment the time and date
after they are set.

• Do not issue this command continuously.

See Also: Copy Date to String (DD/MM/YYYY) (page C-59), Copy Date to String (MM/DD/YYYY)
(page C-60), Copy Time to String (page C-61), Set Date (page S-16)

Argument 1
From
String Literal
String Variable

Set Time
From TIME_STRING String Variable
ioControl Command Reference S-83

Set TPO Percent
Digital Point Action

Function: To set the on time of an output point as a percentage.

Typical Use: To vary the net output percentage over time. Commonly used to control heater outputs in a
pseudo-analog fashion.

Details: • Sets the percentage of on time for an output configured as a TPO.
• Valid range is 0 (always off) to 100 (always on).
• A TPO period of 10 seconds and an output of 20 percent will cause the output point to go on

for 2.0 seconds (10 seconds x .20) and off for 8.0 seconds at 10-second intervals.
• Changes to the output percentage take effect at the beginning of the next period.
• On mistic brains, if a square wave is already running when this command is used, the new

timing will become effective on the next transition (on-to-off or off-to-on). On Ethernet
brains, the current pulse train is immediately cancelled and replaced with the new one,
starting with the off state.

Arguments:

Standard
Example:

OptoScript
Example:

SetTpoPercent(To Percent, On Point)
SetTpoPercent(20, Heater_Output);

This is a procedure command; it does not return a value.

Notes: • When using the output of a PID to drive a digital TPO, scale the analog output point (for the
PID) to 0–100. (This analog point does not have to exist physically, but must be one of the 16
points on the I/O unit.) Use Move to copy the PID analog output value to the digital TPO point
periodically.

• At low percentages, the output module’s minimum turn-on and turn-off times may affect the
accuracy of control. Check the specifications for the module to be used.

• To ensure that the TPO period will always be correct, store this and other changeable I/O
unit values in flash memory (EEPROM) at the I/O unit using the Debug mode in ioControl.
Some older hardware and firmware will not support this feature. For more information, see
the ioControl User’s Guide.

• Setting the value of a digital TPO overrides any prior Turn On or Turn Off command for the
digital point.

Argument 1
To (Percent)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
TPO

Set TPO Percent
To (Percent) 20 Integer 32 Literal

On Point Heater_Output Time Proportional
Output
S-84 ioControl Command Reference

S

Dependencies: • A Set TPO Period command must be used at least once before this command to define the

time period.
• Applies only to output points configured with the TPO feature.

See Also: Set TPO Period (page S-85)

Set TPO Period
Digital Point Action

Function: To set the time proportional output (TPO) period of an output point.

Typical Use: To vary the percentage of on time (duty cycle). Commonly used to control heater outputs in a
pseudo-analog fashion.

Details: • Sets the period of a TPO to the specified value.
• The period is specified from 0.1 to 429,496.7000 seconds (4.97 days), with a resolution of

100 microseconds.
• This command must be used before the Set TPO Percent command.

Arguments:

Standard
Example:

OptoScript
Example:

SetTpoPeriod(To Seconds, On Point)
SetTpoPeriod(60.0, Heater_Output);

This is a procedure command; it does not return a value.

Notes: • The time proportion period specifies only the total time over which the output is varied. Set
TPO Percent sets the on and off time within this period. For example, a TPO period of 30
seconds and an output of 25 percent will cause the output point to go on for 7.5 seconds (30
seconds x .25) and off for 22.5 seconds at 30-second intervals.

• Although the minimum TPO period is 0.1 seconds (and the resolution is 100 microseconds),
at low percentages the minimum turn-on and turn-off times of the digital output module may
be greater. Check the specifications for the module to be used.

• To ensure that the TPO period will always be correct, store this and other changeable I/O
unit values in flash memory (EEPROM) at the I/O unit using the Debug mode in ioControl.
Some older hardware and firmware will not support this feature. For more information, see
the ioControl User’s Guide.

Argument 1
To (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
TPO

Set TPO Period
To (Seconds) 60.0 Float Literal

On Point Heater_Output Time Proportional Output
ioControl Command Reference S-85

• If the TPO period is not stored in flash memory at the I/O unit, use this command
immediately before Set TPO Percent every time. This ensures that the TPO period will be
configured properly if the I/O unit has experienced loss of power. However, do not issue
these commands too frequently, since this can cause unnecessary interruptions in ongoing
processes.

Dependencies: Applies only to output points configured with the TPO feature.

See Also: Set TPO Percent (page S-84)

Set Up Timer Target Value
Timing Action

Function: To set the target value of an up timer.

Typical Use: To initialize an up timer.

Details: • This command sets the target value but does not start the timer. You must start the timer
using the Start Timer command.

• Up timers do not stop timing when they reach their target value. Use the Up Timer Target
Time Reached? command to determine if the target time has been reached.

• The target value must be a positive number in seconds.

Arguments:

Standard
Example:

OptoScript
Example:

SetUpTimerTarget(Target Value, Up Timer)
SetUpTimerTarget(60.0, Oven_Timer);

This is a procedure command; it does not return a value.

Notes: • See “Timing Commands” in Chapter 10 of the ioControl User’s Guide for more information
on timers.

• To set the target value and start the timer in one step, use the Move command to move the
target value to the timer. The timer will immediately start from zero. Using the Move
command overwrites any target value previously set.

See Also: Start Off-Pulse (page S-96), Stop Timer (page S-102), Continue Timer (page C-39), Pause Timer
(page P-1), Up Timer Target Time Reached? (page U-1)

Argument 1
Target Value
Float Literal
Float Variable

Argument 2
Up Timer
Up Timer Variable

Set Up Timer Target Value
Target Value 60.0 Float Literal

Up Timer OVEN_TIMER Up Timer Variable
S-86 ioControl Command Reference

S

Set Variable False
Logical Action

Function: To move a False (0) value into a variable.

Typical Use: To clear a variable after it has been used for program logic.

Details: All numeric variables are False by default unless initialized by the user to a non-zero value.

Arguments:

Standard
Example:

OptoScript
Example:

SetVariableFalse(Variable)
SetVariableFalse(Flag_Hopper_Full);

This is a procedure command; it does not return a value.

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• Speed Tip: This command is faster than Move for moving a zero to a variable.

See Also: Set Variable True (page S-88)

Argument 1
[Value]
Float Variable
Integer 32 Variable

Set Variable False
Flag_Hopper_Full Integer 32 Variable
ioControl Command Reference S-87

Set Variable True
Logical Action

Function: To move a True (+1) value into a variable.

Typical Use: To set a variable to true.

Details: All numeric variables are False by default unless initialized to a non-zero value.

Arguments:

Standard
Example:

OptoScript
Example:

SetVariableTrue(Variable)
SetVariableTrue(FLAG_JOB_DONE);

This is a procedure command; it does not return a value.

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• Speed Tip: This command is faster than Move for moving a +1 value to a variable.

See Also: Set Variable False (page S-87)

Argument 1
[Value]
Float Variable
Integer 32 Variable

Set Variable True
FLAG_JOB_DONE Integer 32 Variable
S-88 ioControl Command Reference

S

Set Year
Time/Date Action

Function: To set the year value (2000 through 2099) in the control engine’s real-time clock/calendar.

Typical Use: To set the year from an ioControl program.

Details: • The To parameter (Argument 1) can be an integer or a float, although an integer is preferred.
• Executing this command would set the year (2000 through 2099) in the control engine’s

real-time clock/calendar.
• The control engine’s real-time clock/calendar will automatically increment the time and date

after they are set.
• All erroneous year values are ignored.

Arguments:

Standard
Example:

OptoScript
Example:

SetYear(To)
SetYear(YEAR);

This is a procedure command; it does not return a value.

Notes: • The control engine’s real-time clock/calendar will automatically increment the time and date
after they are set.

• Do not issue this command continuously.

See Also: Get Day (page G-49), Get Day of Week (page G-50), Get Hours (page G-63), Get Minutes
(page G-86), Get Month (page G-97), Get Seconds (page G-135), Get Year (page G-145), Set
Hours (page S-25), Set Day (page S-17), Set Minutes (page S-43), Set Month (page S-57), Set
Seconds (page S-78)

Argument 1
To
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Set Year
To YEAR Integer 32 Variable
ioControl Command Reference S-89

Shift Numeric Table Elements
Miscellanous Action

Function: To shift numeric table elements up or down.

Typical Use: To follow items on a conveyor.

Details: • For positive shift counts, entries shift toward the end of the table. For negative shift counts,
entries shift toward the beginning (index zero) of the table.

• Entries at the beginning or end of the table are lost when shifted beyond those limits.
• Zeros are written to entries left empty by shifting.

Arguments:

Standard
Example:

OptoScript
Example:

ShiftNumTableElements(Shift Count, Table)
ShiftNumTableElements(-5, MYTABLE);

This is a procedure command; it does not return a value.

Notes: • Use Move from Numeric Table Element before this command to capture values that will be
shifted out of the table, if they need to be used.

• Use Move to Numeric Table Element (for example) after this command to fill vacated
entries, if desired.

See Also: Move Numeric Table Element to Numeric Table (page M-13), Move from Numeric Table Element
(page M-8), Move to Numeric Table Element (page M-17)

Argument 1
Shift Count
Integer 32 Literal
Integer 32 Variable

Argument 2
Table
Float Table
Integer 32 Table

Shift Numeric Table Elements
Shift Count -5 Integer 32 Literal

Table MY_TABLE Float Table
S-90 ioControl Command Reference

S

Sine
Mathematical Action

Function: To derive the sine of an angle.

Typical Use: Trigonometric function for computing triangular height of the angle.

Details: • Calculates the sine of Argument 1 and places the result in Argument 2.
• Argument 1 has a theoretical range of -infinity to +infinity, but is limited by the type of

variable used.
• The range of Argument 2 is -1.0 to 1.0, inclusive.
• The following are examples of sine calculations to four decimal places:

Arguments:

Standard
Example:

OptoScript
Example:

Sine(Of)
SINE = Sine(Radians);

This is a function command; it returns the sine of the angle. The returned value can be consumed
by a variable (as in the example shown) or by a control structure, mathematical expression, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• To convert units of degrees to units of radians, divide degrees by 57.29578 (or 180 / pi).
• Use Arcsine if the sine is known and the angle is desired.

See Also: Arcsine (page A-12), Cosine (page C-62), Tangent (page T-1)

Radians Degrees Result
0.0 0 0.0

0.7854 45 0.7071
1.5708 90 1.0000
2.3562 135 0.7071
3.1416 180 0.0000
3.9270 225 -0.7071
4.7124 270 -1.0000
5.4978 315 -0.7071
6.2832 360 0.0000

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable

Sine
Of Radians Float Variable

Put Result in SINE Float Variable
ioControl Command Reference S-91

Square Root
Mathematical Action

Function: To calculate the square root of a value.

Typical Use: To solve square root calculations.

Details: Takes the square root of Argument 1 and places the result in Argument 2.

Arguments:

Standard
Example:

OptoScript
Example:

SquareRoot(Of)
Height_of_Square = SquareRoot(Area_of_Square);

This is a function command; it returns square root of the value. The returned value can be
consumed by a variable (as in the example shown) or by a control structure, mathematical
expression, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• Executes faster than raising a number to the 0.5 power.
• Taking the square root of zero or of a negative value will result in zero, and a queue error.

Use > or Greater? to check the value before using the command.
• To convert a differential pressure value representing flow to the proper engineering units,

convert its current value to a number between 0 and 1, take the square root of this number,
then convert it to the desired engineering units. For example: A 0–100" flow signal that
represents 0–50,000 CFH has a value of 50. 50/100 = 0.5. The square root of 0.5 is 0.7071.
0.7071 times 50,000 = 35355 CFH.

Queue Errors: -14 = Invalid number.

See Also: Raise to Power (page R-2), Greater? (page G-146)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable

Square Root
Of Area_of_Square Integer 32 Variable

Put Result in Height_of_Square Integer 32 Variable
S-92 ioControl Command Reference

S

Start Chart
Chart Action

Function: To request that a stopped chart begin executing at Block 0 or to request that a suspended chart
continue executing from the point at which it was suspended.

Typical Use: In the Powerup chart, to start all other charts that need to run. Also used by a main chart to start
event-driven charts.

Details: • This command is only a request.
• If the chart is stopped and fewer than the maximum number of tasks are running, then this

chart will be added to the task queue and this command will succeed. Otherwise, it has no
effect. If the chart is suspended, then the chart is already part of the task queue, and this
command will continue the chart from the point at which it is suspended.

• The maximum number of charts for a SNAP Ultimate brain is 8; the maximum number of
charts for a SNAP-LCE controller is 16.

• Upon success, the chart will start at its next scheduled time in the task queue.

Arguments:

Standard
Example:

OptoScript
Example:

StartChart(Chart)
STATUS = StartChart(CHART_B);

This is a function command; it returns one of the status codes listed below.

Notes: • This command should be used judiciously. It can take up to 100 ms for the chart to start. Use
this command only when timing is not critical. Otherwise, instead of Start Chart, use a chart
that runs continuously and uses subroutines for any kind of repetitive logic.

• See “Chart Commands” in Chapter 10 of the ioControl User’s Guide.
• Normally the status does not need to be checked, since the command will succeed in most

cases. If there are any doubt or concerns, check the STATUS variable.

Dependencies: If the chart is stopped, then a task must be available in the task queue.

Status Codes: 0 = success
-5 = failure

See Also: Continue Chart (page C-38), Stop Chart (page S-99)

Argument 1
Chart
Chart

Argument 2
Put Status in
Float Variable
Integer 32 Variable

Start Chart
Chart CHART_B Chart

Put Status in STATUS Integer 32 Variable
ioControl Command Reference S-93

Start Continuous Square Wave
Digital Point Action

Function: To generate a square wave on an output point.

Typical Use: To drive stepper motor controllers, pulse indicator lamps, or horns or counters connected to
digital outputs.

Details: • Generates a digital waveform on the specified digital output point. On Time specifies the
amount of time in seconds that the point will remain on during each pulse; Off Time
specifies the amount of time the point will remain off.

• The minimum On Time and Off Time is 0.001 second with a resolution of 0.0001 second,
making the maximum frequency 500 Hertz. However, the digital output module’s minimum
turn-on and turn-off times may be greater. Check the specifications for the module to be
used.

• The maximum On Time and Off Time is 429,496.7000 seconds (4.97 days on, 4.97 days off).
• Timing begins with the off state.
• On mistic brains, if a square wave is already running when this command is used, the new

timing will become effective on the next transition (on-to-off or off-to-on). On Ethernet
brains, the current pulse train is immediately cancelled and replaced with the new one,
starting with the off state.

Arguments:

Standard
Example:

OptoScript
Example:

StartContinuousSquareWave(On Time (Seconds), Off Time (Seconds), On Point)
StartContinuousSquareWave(0.100, 0.500, BLINKING_LAMP);

This is a procedure command; it does not return a value.

Notes: • Once the pulse train has started, the digital I/O unit maintains the waveform indefinitely.
• Pulse trains on mistic brains are cancelled when a Turn Off or Turn On is sent to the output,

or when the output is configured (for example, when a strategy is first run and I/O units are
initialized). Ethernet brains do NOT cancel pulse trains on an output upon configuration, or
when the output is turned off or on. To programmatically cancel a pulse train on an Ethernet
brain, use this command with both the on times and off times set to 0. Pulse trains on both
Ethernet and mistic brains will also be cancelled if the brain receives a reset command.

Dependencies: • Applies only to outputs.

Argument 1
On Time (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Off Time (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 3
On Point
Digital Output

Start Continuous Square Wave
On Time (Seconds) 0.100 Integer 32 Literal
Off Time (Seconds) 0.500 Integer 32 Literal

On Point BLINKING_LAMP Digital Output
S-94 ioControl Command Reference

S

• Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO

and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

See Also: Generate N Pulses (page G-5)

Start Counter
Digital Point Action

Function: To reactivate a standard digital input counter or quadrature counter.

Typical Use: To restart a digital input counter or quadrature counter after it has been stopped.

Details: • Standard digital only; high-density digital counters cannot be stopped or started.
• Must be used to activate quadrature counter inputs on serial (Mistic) I/O units. On

Ethernet-based (MMP) I/O units, counters start as soon as they are configured, and Start
Counter is only used after you have used the Stop Counter command.

• Does not reset the counter or quadrature counter to zero.
• Retains any previously accumulated counts.
• A quadrature counter occupies two adjacent points, so quadrature modules appear with only

points 00 and 02 available.

Arguments:

Standard
Example:

OptoScript
Example:

StartCounter(On Point)
StartCounter(BAGGAGE_COUNTER);

This is a procedure command; it does not return a value.

Notes: Use Clear Counter to clear a counter or quadrature counter to zero.

Dependencies: Applies only to standard digital inputs configured with the counter or quadrature counter feature.

See Also: Get Counter (page G-48), Get & Clear Counter (page G-18), Clear Counter (page C-22), Stop
Counter (page S-101)

Argument 1
On Point
Counter
Quadrature Counter

Start Counter
On Point BAGGAGE_COUNTER Counter
ioControl Command Reference S-95

Start Off-Pulse
Digital Point Action

Function: To turn off a digital output for a specified time or to delay turning it on.

Typical Uses: • To serve as an alternative to the Turn On command.
• To “reset” another device.

Details: • Same as using Turn Off followed by a delay followed by Turn On, or if the output was off
already, same as a delay followed by Turn On.

• After the off time expires, this command leaves the point on.
• The time may be specified from 0.0005 to 429,496.7000 seconds (4.97 days), with a

resolution of 100 microseconds. However, the digital output module’s minimum turn-on and
turn-off times may be greater. Check the specifications for the module to be used.

• During the execution of this command, if another Start Off-Pulse is performed, the current
off-pulse is canceled and the new off-pulse is generated.

• The output does not have to be configured with a feature to use this command.

Arguments:

Standard
Example:

OptoScript
Example:

StartOffPulse(Off Time (Seconds), On Point)
StartOffPulse(RESET_TIME, PUMP_2_STOP);

This is a procedure command; it does not return a value.

Notes: • A Turn On command may be used to abort an off-pulse before the end of the off time.
• Caution: If this command is used more frequently than the specified delay, the output will

remain off.

Dependencies: • Applies only to outputs.
• Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO

and UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains,
see the Appendix Opto 22 Brain Families.

See Also: Start On-Pulse (page S-97), Turn Off (page T-25), Turn On (page T-27)

Argument 1
Off Time (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Digital Output

Start Off-Pulse
Off Time (Seconds) RESET_TIME Float Literal

On Point PUMP_2_STOP Digital Output
S-96 ioControl Command Reference

S

Start On-Pulse
Digital Point Action

Function: To turn on a digital output for a specified period or to delay turning it off.

Typical Uses: • As an alternative to the Turn Off command.
• To “reset” another device.
• To increment a counter.
• To latch devices connected to digital outputs that require a minimum pulse duration to latch,

such as motor starters and latching relays.

Details: • Same as using Turn On followed by a delay followed by Turn Off, or if the output was on
already, same as a delay followed by Turn Off.

• After the on time expires, this command leaves the point off.
• The time may be specified from 0.0005 to 429,496.7000 seconds (4.97 days), with a

resolution of 100 microseconds. However, the digital output module’s minimum turn-on and
turn-off times may be greater. Check the specifications for the module to be used.

• During the execution of this command, if another Start On-Pulse is performed, the current
on-pulse is cancelled and the new On-pulse is generated.

• The output does not have to be configured with a feature to use this command.

Arguments:

Standard
Example:

OptoScript
Example:

StartOnPulse(On Time (Seconds), On Point)
StartOnPulse(MIN_LATCH_TIME, PUMP_2_RUN);

This is a procedure command; it does not return a value.

Notes: • A Turn Off command may be used to abort an on-pulse before the end of the on time.
• Caution: If this command is used more frequently than the specified delay, the output will

remain on.

Dependencies: Available on mistic multifunction I/O units, SNAP PAC R-series controllers, and SNAP EIO and
UIO brains with firmware version 7.0 or higher. For a list of mistic multifunction brains, see the
Appendix Opto 22 Brain Families.

See Also: Start Off-Pulse (page S-96), Turn Off (page T-25), Turn On (page T-27)

Argument 1
On Time (Seconds)
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
On Point
Digital Output

Start On-Pulse
On Time (Seconds) MIN_LATCH_TIME Float Variable

On Point PUMP_2_RUN Digital Output
ioControl Command Reference S-97

Start Timer
Timing Action

Function: To start a timer variable.

Typical Use: To start an up timer or a down timer. To measure time elapsed since an event occurred.

Details: • Use this command to start an up timer. Up timer variables start from 0 and count up.
• Also use this command to start a down timer. Down timer variables start from their preset

value and count down to 0. Since the default preset value for a down timer is zero, nothing
will happen if you start the timer without first using the Set Down Timer Preset Value
command.

Arguments:

Standard
Example:

OptoScript
Example:

StartTimer(Timer)
StartTimer(Oven_Timer);

This is a procedure command; it does not return a value.

Notes: • See “Timing Commands” in Chapter 10 of the ioControl User’s Guide for more information
on timers.

• To set the target value (for an up timer) or the preset value (for a down timer) and start the
timer at the same time, use the Move command.

• Start Timer always starts up timers from zero and down timers from their preset value. To
restart a timer from the value where it was paused, use the command Continue Timer
instead.

See Also: Stop Timer (page S-102), Continue Timer (page C-39), Pause Timer (page P-1), Set Down Timer
Preset Value (page S-21), Set Up Timer Target Value (page S-86)

Argument 1
Timer
Down Timer Variable
Up Timer Variable

Start Timer
Timer Oven_Timer Down Timer Variable
S-98 ioControl Command Reference

S

Stop Chart
Chart Action

Function: To stop a specified chart.

Typical Use: To stop another chart or the chart in which the command appears.

Details: • Unconditionally stops any chart that is either running or suspended.
• Removes the stopped chart from the task queue, making another task available.
• A chart can stop itself or any other chart. A chart that stops itself will immediately give up

the remaining time allocated in its time slice(s). Stopping another chart won’t take effect
immediately but will take effect at the beginning of that chart’s scheduled time in the queue.

• Charts that are stopped or suspended cannot start or continue themselves (nor can they do
anything else).

• Stopped charts cannot be continued; they can only be started again (that is, their execution
will begin again at Block 0, not at the point at which they were stopped).

Arguments:

Standard
Example:

OptoScript
Example:

StopChart(Chart)
StopChart(CHART_B);

This is a procedure command; it does not return a value.

Notes: • This command should be used judiciously. It can take up to 100 ms for the chart to stop. Use
this command only when timing is not critical. Otherwise, instead of Stop Chart, use a chart
that runs continuously and uses subroutines for any kind of repetitive logic.

• See “Chart Commands” in Chapter 10 of the ioControl User’s Guide.
• Use Suspend Chart if you want to continue a chart from where it left off.

See Also: Start Chart (page S-93), Suspend Chart (page S-106), Chart Stopped? (page C-10)

Argument 1
Chart
Chart

Stop Chart
Chart CHART_B Chart
ioControl Command Reference S-99

Stop Chart on Error
Error Handling Action

Function: To stop the chart that caused the error at the top of the message queue.

Typical Use: To include in an error handler chart that runs with the other charts in a strategy. This chart
monitors the message queue and takes appropriate action. Utilizing this command, the error
handler chart can stop any chart that causes an error.

Details: • Since ioControl is a multitasking environment, an error handler chart cannot stop another
chart instantaneously with this command, because the error handler chart itself is executed
periodically. The actual time required depends on how many charts are running
simultaneously.

• See the Errors Appendix in the ioControl User’s Guide for a list of errors that may appear in
the message queue.

Arguments: None.

Standard
Example:

Stop Chart on Error

OptoScript
Example:

StopChartOnError()
StopChartOnError();

This is a procedure command; it does not return a value.

Notes: • See “Error Handling Commands” and Chart Commands” in Chapter 10 of the ioControl User’s
Guide.

• To get to each error in the message queue, the top error must be discarded, bringing the
next error to the top. Use Remove Current Error and Point to Next Error to do this.

See Also: Remove Current Error and Point to Next Error (page R-22), Get Error Count (page G-53), Suspend
Chart on Error (page S-107)
S-100 ioControl Command Reference

S

Stop Counter
Digital Point Action

Function: To deactivate a standard digital input counter or quadrature counter.

Typical Use: To inhibit a counter or quadrature counter until further notice.

Details: • Standard digital only. High-density digital counters cannot be stopped or started.
• Stops the specified counter or quadrature counter.
• Stops counting incoming quadrature pulses until Start Counter is used.
• Does not reset the counter or quadrature counter to zero.
• Retains any previously accumulated counts.
• A quadrature counter occupies two adjacent points, so quadrature modules appear with only

points 00 and 02 available.

Arguments:

Standard
Example:

OptoScript
Example:

StopCounter(On Point)
StopCounter(BEAN_COUNTER);

This is a procedure command; it does not return a value.

Notes: Use Clear Counter to set counts to zero.

Dependencies: Applies only to standard digital inputs configured with the counter or quadrature counter feature.

See Also: Get Counter (page G-48), Get & Clear Counter (page G-18), Clear Counter (page C-22), Start
Continuous Square Wave (page S-94)

Argument 1
On Point
Counter
Quadrature Counter

Stop Counter
On Point BEAN_COUNTER Counter
ioControl Command Reference S-101

Stop Timer
Timing Action

Function: To stop a timer variable.

Typical Use: To stop timing an event.

Details: • Once an up timer or a down timer has been stopped, its value is zero. If you stop a timer and
move the value to a variable, you will always get 0.0.

• To store the timer’s value at the time it was stopped, or to be able to continue a timer, use
the command Pause Timer instead.

Arguments:

Standard
Example:

OptoScript
Example:

StopTimer(Timer)
StopTimer(OVEN_TIMER);

This is a procedure command; it does not return a value.

Notes: See “Timing Commands” in Chapter 10 of the ioControl User’s Guide for more information on
timers.

See Also: Start Off-Pulse (page S-96), Continue Timer (page C-39), Pause Timer (page P-1), Set Down Timer
Preset Value (page S-21), Set Up Timer Target Value (page S-86)

Argument 1
Timer
Down Timer Variable
Up Timer Variable

Stop Timer
Timer OVEN_TIMER Down Timer Variable
S-102 ioControl Command Reference

S

String Equal?
String Condition

Function: To compare two strings for equality.

Typical Use: To check passwords or barcodes for an exact match.

Details: • Determines if strings in Argument 1 and Argument 2 are equal. Examples:

• Evaluates True if both strings are exactly the same, False otherwise.
• Only an exact match on all characters (including leading or trailing spaces) will return a True.
• This test is case-sensitive. For example, a “T” does not equal a “t.”
• Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• Functionally equivalent to the Test Equal Strings action.
• Quotes (“”) are used in OptoScript code, but not in standard ioControl code.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the == operator.
if (NEW_ENTRY == PASSWORD) then

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• The example shown is only one way to use the == operator. For more information on using

comparison operators and strings in OptoScript code, see Chapter 11 of the ioControl User’s
Guide

• Use String Equal to String Table Element? to compare with strings in a table.

See Also: Test Equal Strings (page T-3), String Equal to String Table Element? (page S-104)

Argument 1 Argument 2 Result
“OPTO” “OPTO” True
“OPTO” “Opto” False

“22” “22” True
“2 2” “22” False

Argument 1
Is
String Literal
String Variable

Argument 2
To
String Literal
String Variable

Is NEW_ENTRY String Variable
String Equal?

To PASSWORD String Variable
ioControl Command Reference S-103

String Equal to String Table Element?
String Condition

Function: To compare two strings for equality.

Typical Use: To check passwords or barcodes for an exact match with an entry in a string table.

Details: • Determines if one string (Argument 1) is equal to another (a string at index Argument 2 in
string table Argument 3). Examples:

• Evaluates True if both strings are exactly the same, False otherwise.
• Only an exact match on all characters (including leading or trailing spaces) will return a True.
• This test is case-sensitive. For example, a “T” does not equal a “t.”
• Quotes (“”) are used in OptoScript code, but not in standard ioControl code.
• A valid range for the At Index parameter (Argument 2) is zero to the table length (size).
• Functionally equivalent to the Test Equal Strings action.
• Quotes (“”) are used in OptoScript code, but not in standard ioControl code.

Arguments:

Standard
Example:

The following example compares a new barcode to a string in a string table. This could be done
in a loop to see if the new barcode exists in a table.

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the == operator.
if (NEW_BARCODE == Current_Products[Loop_Index]) then

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• The example shown is only one way to use the == operator. For more information on using

comparison operators and strings in OptoScript code, see Chapter 11 of the ioControl User’s
Guide

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to the table size.

See Also: Test Equal Strings (page T-3), String Equal? (page S-103)

String 1 String 2 Result
“OPTO” “OPTO” True
“OPTO” “Opto” False

“22” “22” True
“2 2” “22” False

Argument 1
Is
String Literal
String Variable

Argument 2
At Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
String Table

Is NEW_BARCODE String Variable with Barcode
String Equal to String Table Element?

At Index Loop_Index Integer 32 Variable
Of Table Current_Products String Table
S-104 ioControl Command Reference

S

Subtract
Mathematical Action

Function: To find the difference between two numeric values.

Typical Use: To subtract two numbers to get a third number, or to reduce the first number by the amount of
the second.

Details: • Subtracts Argument 2 from Argument 1 and places the result in Argument 3.
• Argument 3 can be the same as either of the first two arguments (unless they are read-only,

such as analog inputs), or it can be a completely different argument.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the – operator.
Num_Widgets_Left_to_Make = NuSm_Widgets_to_Produce –
Num_Widgets_Produced;

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• In OptoScript code, the – operator has many uses. For more information on mathematical

expressions in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

Queue Errors: -13 = Overflow error—result too large.

See Also: Decrement Variable (page D-1), Add (page A-3)

Argument 1
[Value]
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
Minus
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable

Subtract
Num_Widgets_to_Produce Integer 32 Variable

Minus Num_Widgets_Produced Integer 32 Variable
Put Result in Num_Widgets_Left_to_Make Integer 32 Variable
ioControl Command Reference S-105

Suspend Chart
Chart Action

Function: To suspend a specified chart.

Typical Use: To suspend another chart or the chart in which the command appears.

Details: • Unconditionally suspends any chart that is running.
• Does not remove the suspended chart from the task queue.
• A chart can suspend itself or any other chart.
• IMPORTANT: A chart that suspends itself may not do so immediately. Depending on activity

in the control engine, the chart may continue for another command or two. To start another
chart and immediately suspend the first chart, use the command Call Chart instead.

• Suspending another chart won’t take effect immediately but will take effect at the beginning
of that chart’s scheduled time in the queue.

• Charts that are suspended cannot start or continue themselves (nor can they do
anything else).

• Suspended charts can be continued from the point at which they were suspended (using
either Start Chart or Continue Chart), or they can be stopped (using Stop Chart).

Arguments:

Standard
Example:

OptoScript
Example:

SuspendChart(Chart)
STATUS = SuspendChart(CHART_B);

This is a function command; it returns one of the status codes listed below.

Notes: • This command should be used judiciously. It can take up to 100 ms for the chart to suspend.
Use this command only when timing is not critical. Otherwise, instead of Suspend Chart, use
a chart that runs continuously and uses subroutines for any kind of repetitive logic.

• See “Chart Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = success.
-5 = failure.

See Also: Start Chart (page S-93), Continue Chart (page C-38), Chart Suspended? (page C-11)

Argument 1
Chart
Chart

Argument 2
Put Status in
Float Variable
Integer 32 Variable

Suspend Chart
Chart CHART_B Chart

Put Status in STATUS Integer 32 Variable
S-106 ioControl Command Reference

S

Suspend Chart on Error
Error Handling Action

Function: To suspend the chart that caused the error at the top of the message queue.

Typical Use: To include in an error handler chart that runs with the other charts in a strategy. This chart
monitors the message queue and takes appropriate action. Utilizing this command, the error
handler chart can suspend any chart that causes an error.

Details: • Since ioControl is a multitasking environment, an error handler chart cannot suspend
another chart instantaneously with this command, because the error handler chart itself is
executed periodically. The actual time required depends on how many charts are running
simultaneously as well as on the priority of each.

• See the Errors Appendix in the ioControl User’s Guide for a list of errors that may appear in
the message queue.

Arguments:

Standard
Example:

OptoScript
Example:

SuspendChartOnError()
STATUS = SuspendChartOnError();

This is a function command; it returns one of the status codes listed below.

Notes: • See “Error Handling Commands” and “Chart Commands” in Chapter 10 of the ioControl
User’s Guide.

• To get to each error in the message queue, the top error must be discarded, which brings the
next error to the top. Use Remove Current Error and Point to Next Error to do this.

Status Codes: 0 = success
-5 = failure

See Also: Remove Current Error and Point to Next Error (page R-22), Get Error Count (page G-53), Stop Chart
on Error (page S-100)

Argument 1
Put Status in
Float Variable
Integer 32 Variable

Suspend Chart on Error
Put Status in STATUS Integer 32 Variable
ioControl Command Reference S-107

S-108 ioControl Command Reference

T
 T
Tangent
Mathematical Action

Function: To derive the tangent of an angle.

Typical Use: Trigonometric function for computing angular rise.

Details: • Computes the tangent (in radians) of Argument 1 and places the result in Argument 2.
• Tangent produces a result that theoretically ranges from -infinity to +infinity, but is limited

by the type of the argument.
• Computing a tangent at (pi / 2) ± (n * pi) yields unpredictable results, since ± infinity cannot

be represented. Use Within Limits? to check for a valid Argument 1 value before calling the
Tangent command.

• Tangent is sin (angle) / cos (angle).

Arguments:

Standard
Example:

OptoScript
Example:

Tangent(Of)
TANGENT = Tangent(RADIANS);

This is a function command; it returns the tangent of the angle. The returned value can be
consumed by a control structure (as in the example shown) or by a variable, I/O point, etc. See
Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Mathematical Commands” in Chapter 10 of the ioControl User’s Guide.
• To convert units of degrees to units of radians, divide degrees by 57.29578 (or 180 / pi).
• Use Arctangent if the tangent is known and the angle is desired.

See Also: Arctangent (page A-13), Cosine (page C-62), Sine (page S-91)

Argument 1
Of
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Up Timer Variable

Argument 2
Put Result in
Analog Output
Down Timer Variable
Float Variable
Integer 32 Variable
Up Timer Variable

Tangent
Of RADIANS Float Variable

Put Result in TANGENT Float Variable
ioControl Command Reference T-1

Test Equal
Logical Action

Function: To determine if two values are equal.

Typical Use: To perform logic branching based on whether an argument equals a set value.

Details: • Determines if Argument 1 is equal to Argument 2 and puts result in Argument 3. The result
is non-zero (True) if both values are the same, 0 (False) otherwise. Examples:

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

OptoScript
Example:

For an OptoScript equivalent, see the Equal? command.

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• In many cases it may be safer to use Test Greater or Equal or Test Less or Equal instead,

since exact matches of non-integer types are rare. Be careful when testing equality of
floating point values, since the values must be exactly identical for a true result to occur.
Consider using the following test:

AbsolutedValue(test_float – compare_float) < zero_tolerance

See Also: Test Greater (page T-4), Test Less (page T-6), Test Greater or Equal (page T-5), Test Less or Equal
(page T-7), Test Not Equal (page T-8)

Argument 1 Argument 2 Argument 3
0 0 True
-1 0 False

255 65280 False
22.22 22.22 True

Argument 1
[Value]
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
With
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Up Timer Variable

Test Equal
TOP_LEVEL Integer 32 Variable

With 1000 Integer 32 Literal
Put Result in FLAG_AT_THE_TOP Integer 32 Variable
T-2 ioControl Command Reference

T

ioControl Command Reference T-3

Test Equal Strings
String Action

Function: To compare two strings for equality.

Typical Use: To check passwords or barcodes for an exact match.

Details: • Determines if Argument 1 and Argument 2 are equal and puts result in Argument 3. The
result is non-zero (True) if both strings are exactly the same, 0 (False) otherwise. Examples:

• Only an exact match on all characters (including leading or trailing spaces) will return a True.
• This test is case-sensitive. For example, a “T” does not equal a “t.”
• The result can be sent directly to a digital output if desired.
• This action is functionally equivalent to the String Equal? condition.
• Quotes (“”) are used in OptoScript code, but not in standard ioControl code.

Arguments:

Standard
Example:

The following example compares a password variable to a string constant. The resulting value in
IS_AUTHORIZED could be used at several points in the program to determine if the user has
sufficient authorization. Quotes are shown for clarity only; do not use them in standard
commands.

The following example compares a barcode to a string retrieved from a string table. This
instruction would be located in a loop that retrieves each entry from a string table and performs
this comparison.

OptoScript
Example:

For an OptoScript equivalent, see the String Equal? command.

Notes: • See “String Commands” in Chapter 10 of the ioControl User’s Guide.
• Use String Equal to String Table Element? to compare with strings in a table.

See Also: Compare Strings (page C-35), String Equal? (page S-103) String Equal to String Table Element?
(page S-104)

Argument 1 Argument 2 Argument 3
“OPTO” “OPTO” True
“OPTO” “Opto” False

“22” “22” True
“2 2” “22” False

Argument 1
Compare
String Literal
String Variable

Argument 2
With
String Literal
String Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable

Test Equal Strings
Compare Password String Variable

With “LISA” String Literal
Put Result in IS_AUTHORIZED Integer 32 Variable

Test Equal Strings
Compare BARCODE String Variable

With BARCODE_FROM_LIST String Variable
Put Result In IS_IN_LIST Integer 32 Variable

Test Greater
Logical Action

Function: To determine if one value is greater than another.

Typical Use: To determine if an analog value is too high.

Details: • Determines if Argument 1 is greater than Argument 2 and puts result in Argument 3. The
result is non-zero (True) if Argument 1 is greater than Argument 2, 0 (False) otherwise.
Examples:

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

OptoScript
Example:

For an OptoScript equivalent, see the Greater? command.

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• Consider using Test Greater or Equal instead.

See Also: Test Equal (page T-2), Test Less (page T-6), Test Greater or Equal (page T-5), Test Less or Equal
(page T-7), Test Not Equal (page T-8)

Argument 1 Argument 2 Argument 3
0 0 False
-1 0 False
-1 -3 True

22.221 22.220 True

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
Greater than
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Up Timer Variable

Test Greater
Is TEMP Analog Input

Greater than 1000 Integer 32 Literal
Put Result in TEMP_COMPARISON Integer 32 Variable
T-4 ioControl Command Reference

T

Test Greater or Equal
Logical Action

Function: To determine if one value is greater than or equal to another.

Typical Use: To determine if an analog value has reached a maximum allowable value.

Details: • Determines if Argument 1 is greater than or equal to Argument 2 and puts result in
Argument 3. The result is non-zero (True) if Argument 1 is greater than or equal to Argument
2, 0 (False) otherwise. Examples:

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

OptoScript
Example:

For an OptoScript equivalent, see the Greater Than or Equal? command.

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• When using analog values or digital features in this command, be sure to take into

consideration the units that the value is read in and adjust the test values accordingly.

See Also: Test Equal (page T-2), Test Less (page T-6), Test Greater (page T-4), Test Less or Equal (page T-7),
Test Not Equal (page T-8)

Argument 1 Argument 2 Argument 3
0 0 False
-1 0 False
-1 -3 True

22.221 22.220 True

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
> or =
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Up Timer Variable

Test Greater or Equal
Is ROOM_TEMP Analog Input

> or = 78.5000 Float Literal
Put Result in FLAG_ROOM_TEMP_OK Integer 32 Variable
ioControl Command Reference T-5

Test Less
Logical Action

Function: To determine if one value is less than another.

Typical Use: To determine if a tank needs to be filled.

Details: • Determines if Argument 1 is less than Argument 2 and puts result in Argument 3. The result
is non-zero (True) if Argument 1 is less than Argument 2, 0 (False) otherwise. Examples:

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

OptoScript
Example:

For an OptoScript equivalent, see the Less? command.

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• Consider using Test Less or Equal instead, since exact matches of non-integer types are rare.

See Also: Test Greater (page T-4), Test Equal (page T-2), Test Greater or Equal (page T-5), Test Less or Equal
(page T-7), Test Not Equal (page T-8)

Argument 1 Argument 2 Argument 3
0 0 False
-1 0 True
-1 -3 False

22.221 22.220 False

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
Less than
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Up Timer Variable

Test Less
Is TANK_LEVEL Analog Input

Less than FULL_TANK_LEVEL Integer 32 Variable
Put Result in FLAG_TANK_FILL_VALVE Digital Output
T-6 ioControl Command Reference

T

Test Less or Equal
Logical Action

Function: To determine if one value is less than or equal to another.

Typical Use: To determine if a temperature is below or the same as a certain value.

Details: • Determines if Argument 1 is less than or equal to Argument 2 and puts result in Argument 3.
The result is non-zero (True) if Argument 1 is less than or equal to Argument 2, 0 (False)
otherwise. Examples:

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

Put Result in FLAG_TEMP_OK Integer 32 Variable

OptoScript
Example:

For an OptoScript equivalent, see the Less Than or Equal? command.

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• When using analog values or digital features in this command, be sure to take into

consideration the units that the value is read in and adjust the test values accordingly.

See Also: Test Greater (page T-4), Test Less (page T-6), Test Greater or Equal (page T-5), Test Equal
(page T-2), Test Not Equal (page T-8)

Argument 1 Argument 2 Argument 3
0 0 True
-1 0 True
-1 -3 False

22.221 22.220 False

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
< or =
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Up Timer Variable

Test Less or Equal
Is TEMPERATURE Float Variable

< or = 98.6 Float Literal
ioControl Command Reference T-7

Test Not Equal
Logical Action

Function: To determine if two values are different.

Typical Use: To check a variable against a standard.

Details: • Determines if Argument 1 is different from Argument 2 and puts result in Argument 3. The
result is non-zero (True) if Argument 1 is not the same as Argument 2, 0 (False) if they are
equal. Examples:

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

OptoScript
Example:

For an OptoScript equivalent, see the Not Equal? command.

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• Be careful when testing equality of floating point values, since the values must be exactly

identical for a false result to occur. Consider using the following test:
AbsolutedValue(test_float – compare_float) > float_tolerance

See Also: Test Greater (page T-4), Test Less (page T-6), Test Greater or Equal (page T-5), Test Less or Equal
(page T-7), Test Equal (page T-2)

Argument 1 Argument 2 Argument 3
0 0 False
-1 0 True

255 65280 True
22.22 22.22 False

Argument 1
Is
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
Not Equal to
Analog Input
Analog Output
Digital Input
Digital Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Up Timer Variable

Test Not Equal
Is COUNTER_VALUE Integer 32 Variable

Not Equal to 100 Integer 32 Literal
Put Result in FLAG_NOT_DONE Integer 32 Variable
T-8 ioControl Command Reference

T

Test Within Limits
Logical Action

Function: To determine if a value is greater than or equal to a low limit and less than or equal to a high limit.

Typical Use: To check if a temperature is within an acceptable range.

Details: A logical True (non-zero) is returned if within limits, otherwise a logical False (0) is returned.

Arguments:

Standard
Example:

OptoScript
Example:

For an OptoScript equivalent, see the Within Limits? command.

See Also: Test Greater (page T-4), Test Less (page T-6), Test Greater or Equal (page T-5), Test Less or Equal
(page T-7), Test Equal (page T-2), Test Not Equal (page T-8)

Argument 1
Is
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
>=
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
And <=
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 4
Put Result in
Float Variable
Integer 32 Variable

Test Within Limits
Is CURRENT_TEMP Float Variable
>= COLDEST_TEMP Float Variable

And <= HOTTEST_TEMP Float Variable
Put Result in RESULT Integer 32 Variable
ioControl Command Reference T-9

Timer Expired?
Timing Condition

Function: To determine if the specified timer has reached its target value. For down timers, the target value
is zero. For up timers, it is the value set by the command Set Up Timer Target Value.

Typical Use: To determine if it is time to take an appropriate action.

Details: Evaluates True if the specified timer has reached its target value, False otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

HasTimerExpired(Timer)
if (HasTimerExpired(EGG_TIMER)) then

This is a function command; it returns a non-zero (True) if the timer has expired, 0 (False) if not.
The returned value can be consumed by a control structure (as in the example shown) or by a
variable, I/O point, etc. See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Timing Commands” in Chapter 10 of the ioControl User’s Guide for more information on
using timers.

• This command can be used the same as Down Timer Expired? and Up Timer Target Time
Reached?

See Also: Set Up Timer Target Value (page S-86), Set Down Timer Preset Value (page S-21), Start Off-Pulse
(page S-96), Up Timer Target Time Reached? (page U-1), Down Timer Expired? (page D-21)

Argument 1
Is
Down Timer Variable
Up Timer Variable

Is EGG_TIMER Down Timer Variable
Timer Expired?
T-10 ioControl Command Reference

T

Transfer N Characters
Communication Action

Function: To send data from one communication handle to another.

Typical Uses: To store data from a serial module to a log file, or to take data from a log file and send it via FTP
to another device on the network.

Details: • This command essentially receives data on the source communication handle (Argument 2)
and transmits it on the destination handle (Argument 1), without any processing. When you
use this command, the data sent is not limited to the size of a string. This command is also
faster than receiving data, storing it in a variable, and then transmitting it.

• If you need to process the data from the source handle before sending it to the destination
handle, do not use this command. Instead, create a variable to receive the data from the
source handle, process the data using any of the string commands, and then transmit it to
the destination handle.

• To use this command, first use Open Outgoing Communication to both communication
handles.

• Either use Get Number of Characters Waiting to determine how many bytes of data to
transfer and enter that number in Argument 3, Num Chars, or enter -1 in Argument 3 to
transfer as many characters as are available.

Arguments:

Standard
Example:

OptoScript
Example:

TransferNChars(Destination Handle, Source Handle, Num Chars)
ERROR_CODE = TransferNChars(UIO_3, UIO_4, 3000);

This is a function command; it returns a zero (indicating success) or an error (indicating failure).
The returned value can be consumed by a variable (as shown in the example) or by a control
structure, mathematical expression, etc. See Chapter 11 of the ioControl User’s Guide for more
information.

Notes: • The two communication handles must be unique.
• See “CommunicationCommands” in Chapter 10 of the ioControl User’s Guide.
• For receiving information using FTP communication handles, this command will only work

following the Send Communication Handle Command (dir option) to retrieve directory
information about the local or a remote FTP server. To retrieve a file from a remote FTP

Argument 1
Destination Handle
Communication Handle

Argument 2
Source Handle
Communication Handle

Argument 3
Num Chars
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status In
Float Variable
Integer 32 Variable

Transfer N Characters
Destination Handle UIO_3 Communication Handle

Source Handle UIO_4 Communication Handle
Num Chars 3000 Integer 32 Variable

Put Status in ERROR_CODE Integer 32 Variable
ioControl Command Reference T-11

server, use Send Communication Handle Command (get option) to bring the file into the local
file system, then use a File communication handle to access the file locally.

Status Codes: 0 = Success
-3 = Buffer overrun or invalid length. The only negative number valid for Argument 3 is -1.
-25 = Port not locked. Communication handles in Argument 1 and Argument 2 must be different.
If trying to transfer characters to a file, may be insufficient file space.
-36 = Invalid command or feature not implemented for this type of communication handle in this
version of firmware. To retrieve a file from a remote FTP server, use Send Communication Handle
Command (get option) to bring the file into the local file system, then use a File communication
handle to access the file locally.
-37 = Lock port timeout.
-38 = Send timeout.
-39 = Timeout on receive.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-69 = Invalid parameter (null pointer) passed to command.
-531 = Buffer full. You may be attempting to send data to the serial port faster than the port can
send and buffer data. Try a faster baud rate or a delay between Transfer/Transmit commands.

See Also: Open Outgoing Communication (page O-4), Get Number of Characters Waiting (page G-101),
Close Communication (page C-29)
T-12 ioControl Command Reference

T

Transmit Character
Communication Action

Function: To send a single character to the entity specified by the communication handle.

Typical Uses: • To send a message to another device or file one character at a time.

Details: • Character values sent are 0–255. Only the last eight bits are sent when the value is >255.
• A value of 256 will be sent as a zero. A value of 257 will be sent as a 1.
• To send an ASCII null, use zero. To send an ASCII zero, use 48.
• With a File communication handle, the character is transmitted immediately.
• With any other communication handle, this command does not transmit the character. The

character stays in the buffer until you use Transmit Newline or Transmit String to send it.

Arguments:

Standard
Example:

OptoScript
Example:

TransmitChar(Character, Communication Handle)
ERROR_CODE = TransmitChar(10, UIO_4);

This is a function command; it returns one of the status codes listed below.
In OptoScript code, you can also use a character literal for Argument 1. For example, you
could use TransmitChar('a', UIO_4); rather than having to use TransmitChar(97,
UIO_4); making the code more readable. Unprintable character codes would still require a
number, however.

Notes: • See “Communication Commands” in Chapter 10 of the ioControl User’s Guide.
• Use Transmit String instead when there are a lot of characters to send.

Status Codes: 0 = Success
-36 = Invalid command. Does not apply to the type of communication handle you are using.
-38 = Timeout. If you are using a File communication handle, you may have used a read-only
parameter.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-69 = Invalid parameter (null pointer) passed to command.
-531 = Buffer full. You may be attempting to send data to the serial port faster than the port can
send and buffer data. Try a faster baud rate or a delay between Transfer/Transmit commands.

See Also: Transmit String (page T-22)

Argument 1
From
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable

Argument 2
Communication Handle
Communication Handle

Argument 3
Put Status in
Float Variable
Integer 32 Variable

Transmit Character
From 10 Integer 32 Literal

Communication Handle UIO_4 Communication Handle
Put Status in ERROR_CODE Integer 32 Variable
ioControl Command Reference T-13

Transmit NewLine
Communication Action

Function: To send the message in the transmit buffer. No carriage return is appended.

Typical Use: For TCP/IP communication, to send characters that have been placed in the buffer using the
Transmit Character command.

Details: • CAUTION: The message could be sent and acknowledged but discarded by the destination
with no error if the receiving end’s buffer is full.

• If the communication handle does not use a buffer (for example, a File communication
handle), this command has no effect.

Arguments:

Standard
Example:

OptoScript
Example:

TransmitNewLine(Communication Handle)
ERROR_CODE = TransmitNewLine(UIO_4);

This is a function command; it returns one of the status codes listed below.

Notes: See “Communication Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = Success
-36 = Invalid command. Does not apply to the type of communication handle you are using.
-37 = Lock port timeout.
-38 = Send timeout.
-42 = Invalid limit.
-69 = Invalid parameter (null pointer) passed to command.
-531 = Buffer full. You may be attempting to send data to the serial port faster than the port can
send and buffer data. Try a faster baud rate or a delay between Transfer/Transmit commands.

See Also: Transmit String (page T-22)

Argument 1
Communication Handle
Communication Handle

Argument 2
Put Status in
Float Variable
Integer 32 Variable

Transmit NewLine
Communication Handle UIO_4 Communication Handle

Put Status in ERROR_CODE Integer 32 Variable
T-14 ioControl Command Reference

T

Transmit Numeric Table
Communication Action

Function: Sends a specific number of numeric table values to another entity, such as another control engine
or a binary file.

Typical Use: Efficient method of writing binary data to a file.

Arguments:

Standard
Example:

OptoScript
Example:

TransmitNumTable(Length, Start at Index, Of Table, Communication Handle)
Xmit_status = TransmitNumTable(Table_length, 0, Peer_data_table, UIO_5);

This is a function command; it returns one of the status codes listed below.

Notes: Use Transmit Character first to send a destination index, table ID, etc. if desired. These values
could be sent as fixed length or carriage return delimited.

Dependencies: Must first use Open Outgoing Communication to establish a session, or (for TCP communication
handles) Listen for Incoming Communication and Accept Incoming Communication to accept a
session initiated by a TCP/IP peer. See “Communication Commands” in Chapter 10 of the
ioControl User’s Guide for more information.

Status Codes: 0 = Success
-36 = Invalid command. Does not apply to the type of communication handle you are using.
-37 = Lock port timeout.
-38 = Send timeout. If you are using a File communication handle, you may have used a read-only
parameter.
-42 = Invalid limit.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-69 = Invalid parameter (null pointer) passed to command.

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Float Table
Integer 32 Table
Integer 64 Table

Argument 4
Communication Handle
Communication Handle

Argument 5
Put Status in
Float Variable
Integer 32 Variable

Transmit Numeric Table
Length Table_length Integer 32 Variable

Start at Index 0 Integer 32 Literal
Of Table Peer_data_table Float Table

Communication Handle UIO_5 Communication Handle
Put Status in Xmit_status Integer 32 Variable
ioControl Command Reference T-15

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to the table size.
-531 = Buffer full. You may be attempting to send data to the serial port faster than the port can
send and buffer data. Try a faster baud rate or a delay between Transfer/Transmit commands.

See Also: Receive Numeric Table (page R-16), Receive String Table (page R-21), Receive Pointer Table
(page R-17), Transmit String (page T-22), Transmit Character (page T-13), Transmit String Table
(page T-23), Transmit Pointer Table (page T-16), Transfer N Characters (page T-11)

Transmit Pointer Table
Communication Action

Function: Sends a specific number of pointer table values to another entity, such as another control engine
or a file. (The values pointed to are transmitted, not the pointers themselves.)

Typical Use: Efficient method of data transfer to a file.

Arguments:

Standard
Example:

OptoScript
Example:

TransmitPtrTable(Length, Start at Index, Of Table, Communication Handle)
Xmit_status = TransmitPtrTable(Table_length, 0, Peer_data_table, UIO_5);

This is a function command; it returns one of the status codes listed below.

Notes: • Use Transmit Character first to send a destination index, table ID, etc. if desired. These
values could be sent as fixed length or carriage return delimited.

• Pointers in the table must not point to another table.
• Make sure that the tables used on both ends of the communication point to the same types

and sizes of data. For example, if you transmit a table with pointers to a float, an integer,
and a string with width 10, make sure the table on the receiving end is exactly the same.

Dependencies: Must first use Open Outgoing Communication to establish a session, or (for TCP communication
handles) Listen for Incoming Communication and Accept Incoming Communication to accept a
session initiated by a TCP/IP peer. See “Communication Commands” in Chapter 10 of the
ioControl User’s Guide for more information.

Status Codes: 0 = Success
-36 = Invalid command. Does not apply to the type of communication handle you are using.

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
Pointer Table

Argument 4
Communication Handle
Communication Handle

Argument 5
Put Status in
Float Variable
Integer 32 Variable

Transmit Pointer Table
Length Table_length Integer 32 Variable

Start at Index 0 Integer 32 Literal
Of Table Peer_data_table Pointer Table

Communication Handle UIO_5 Communication Handle
Put Status in Xmit_status Integer 32 Variable
T-16 ioControl Command Reference

T

-37 = Lock port timeout.
-38 = Send timeout.
-42 = Invalid limit.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-69 = Invalid parameter (null pointer) passed to command.
-531 = Buffer full. You may be attempting to send data to the serial port faster than the port can
send and buffer data. Try a faster baud rate or a delay between Transfer/Transmit commands.

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to the table size.
-29 = Wrong object type. Pointers in the table must point to strings, integers, or floats. Tables are
not allowed.

See Also: Receive Numeric Table (page R-16), Receive String Table (page R-21), Receive Pointer Table
(page R-17), Transmit String (page T-22), Transmit Character (page T-13), Transmit String Table
(page T-23), Transmit Numeric Table (page T-15), Transfer N Characters (page T-11)
ioControl Command Reference T-17

Transmit/Receive Mistic I/O Hex String
Communication Action

Function: Assists in sending custom commands using hex to a mistic I/O unit.

Typical Uses: Reading a group of 16 event latches from a multifunction I/O unit.

Details: • Sends the command string, gets the response, and verifies the DVF (data verification field,
such as a CRC). A zero result indicates the response was received and verified.

• A hex string representation (of a mistic command in "binary command format") is used to
make the command string and the response string more readable to the user. The control
engine will convert this hex string and append the DVF (data verification field, such as a
CRC) appropriate for the I/O unit passed.

• The control engine can optionally pre-pend the required (by mistic's "binary command
format") address and length bytes.

Otherwise, if the option flag is 0, the command string passed should include those four
characters at the beginning of the string.

Set the option flag to 0 for backwards-compatibility with the old OptoControl commands:
Transmit/Receive Mistic I/O Hex String with CRC and Transmit/Receive Mistic I/O Hex
String with Checksum. The "with Checksum" or "with CRC" are no longer relevant since the
control engine will use whatever I/O unit it is configured for.

• An option flag of 0 pre-pends no address info; it behaves like the OptoControl commands. A
non-zero flag will cause the control engine to pre-pend the address of the board passed and
the appropriate length of the mistic command passed.

Arguments:

Standard
Example:

OptoScript
Example:

TransReceMisticIoHexString(Hex String, I/O Unit, Option Flag, Hex Response)
RECV_STATUS = TransReceMisticIoHexString(IO_Command, B3000_1, 0,

Response);

This is a function command; it returns one of the status codes listed below.

Argument 1
mistic Command
String Literal
String Variable

Argument 2
I/O Unit
B100
B200
B3000 (Analog)
B3000 (Digital)
G4A8R, G4RAX
G4D16R
G4D32RS

Argument 3
Option Flag
Integer 32 Literal
Integer 32 Variable

Argument 4
mistic Response
String Variable

Argument 5
Put status in
Float Variable
Integer 32 Variable

Transmit/Receive Mistic I/O Hex String
mistic Command B3000_1 String Variable

I/O Unit IO_COMMAND B3000 (Digital)
Option Flag 0 Integer 32 Literal

mistic Response RESPONSE String Variable
Put Status in RECV_STATUS Integer 32 Variable
T-18 ioControl Command Reference

T

Notes: Use Convert Hex String to Number when the response represents a count or bit pattern. The

commands Convert Mistic I/O Hex String to Float and Convert Number to Mistic I/O Hex String
may also come in handy.

Status Codes: 0 = Success.
-44 = String too short. The string passed was empty, or an odd number of characters. (To
represent one byte as a hex string requires two characters, for example an 'f' is "66" so sending
an odd number of characters is incorrect.)
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

Errors returned
by the brain:

See form #270, Mistic Protocol user's guide for more information on these errors. The mistic error
code is shown in [square] brackets.
 -1 = [1] Undefined command
 -2 = [2] CRC or checksum mismatch
-531 = [3] Buffer overrun – too many characters received
 -4 = [4] Powerup clear expected.
 -70 = [5] Not enough chars received
 -7 = [6] Communication watchdog timed out (activated).
 -6 = [7] Specified data invalid error.
 -35 = [9] Invalid point type for the command sent.
 -94 = [10] Invalid event entry or command.
 -42 = [11] Invalid time delay limit reached – digital only.

Queue Errors: -538 = The address string passed does not match the passed I/O unit's address. This will appear
as a warning when using the option flag set to 0 if the address passed (represented by the first
two characters in the mistic command string) does not match the address of the I/O unit.
The "errors returned by the brain" listed above (with the exception of the PUC error) will also
appear in the message queue for each retry.

See Also: Convert Hex String to Number (page C-41), Convert Mistic I/O Hex String to Float (page C-45),
Convert Number to Mistic I/O Hex String (page C-49)
ioControl Command Reference T-19

Transmit/Receive String
Communication Action

Function: Sends a message, and then waits for an end-of-message delimited response when
communicating via TCP.

Typical Use: Sending and receiving messages and data to/from other devices. via TCP/IP.

Details: • See the Details section for Transmit String and Receive String. This command is the
equivalent of using Transmit String followed by Receive String.

• If the response has multiple embedded end-of-message (EOM) characters, use Receive
String to get each additional EOM-delimited section.

• Do not use this command with FTP or File communication handles.
• If the EOM-delimited string is longer than the destination string length, a -23 error is

returned and as many characters as fit in the destination string are placed there. To see how
many characters were received, use a Get Length command for the destination string. The
characters remaining, minus the data just received, may be retrieved by a subsequent
call to Receive String.

Arguments:

Standard
Example:

OptoScript
Example:

TransmitReceiveString(String, Communication Handle, Put Result in)
TR_STATUS = TransmitReceiveString(XMIT_MSG, UIO_4, RECV_MSG);

This is a function command; it returns one of the status codes listed below.

Notes: • Use Move String, Append String to String or Append Character to String to build the string to
send.

• Use Receive String or Receive N Characters in the destination device followed by Transmit
String for the reply.

• See more details in Transmit String and Receive String.
• See “Communication Commands” in Chapter 10 of the ioControl User’s Guide.

Dependencies: • Must first use Open Outgoing Communication to establish a session, or (for TCP
communication handles) Accept Incoming Communication to accept a session initiated by a
TCP/IP peer.

• After using Open Outgoing Communication, use the Set End-Of-Message Terminator
command to change the default of 13 (carriage return) if needed.

Argument 1
From
String Literal
String Variable

Argument 2
Communication Handle
Communication Handle

Argument 4
Put Result in
String Variable

Argument 5
Put Status in
Float Variable
Integer 32 Variable

Transmit/Receive String
From XMIT_MSG String Variable

Communication Handle UIO_4 Communication Handle
Put Result in RECV_MSG String Variable
Put Status in TR_STATUS Integer 32 Variable
T-20 ioControl Command Reference

T

Status Codes: 0 = Success

-23 = Destination string too short.
-37 = Lock port timeout.
-38 = Send timeout.
-39 = Timeout on receive.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-58 = No data received. May have timed out if no response in 10 seconds. Check I/O unit power.
-76 = At end of file.
-69 = Invalid parameter (null pointer) passed to command.
-408 = Error during file access. For example, attempted to write to a file opened for reading.
-531 = Buffer full. You may be attempting to send data to the serial port faster than the port can
send and buffer data. Try a faster baud rate or a delay between Transfer/Transmit commands.

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to the table size.

See Also: Transmit String (page T-22), Receive String (page R-19), Open Outgoing Communication
(page O-4), Get End-Of-Message Terminator (page G-51), Set End-Of-Message Terminator
(page S-22), Transfer N Characters (page T-11)
ioControl Command Reference T-21

Transmit String
Communication Action

Function: To send a message to another entity.

Typical Use: To write a string to a text file.

Details: • For communication handles that use buffers (for example, TCP), if the transmit buffer of the
specified handle has any characters in it (previously placed there by Transmit Character),
they will be sent first, followed by any characters that may be in the string. If the string is
empty, the transmit buffer contents will be sent. If both the string and the transmit buffer are
empty, the packet will not be sent.

• When using a file, the string is immediately written to the file.

Arguments:

Standard
Example:

OptoScript
Example:

TransmitString(String, Communication Handle)
COMM_STATUS = TransmitString(XMIT_MSG, UIO_5);

This is a function command; it returns one of the status codes listed below.

Dependencies: • Must first use Open Outgoing Communication to establish a session, or (for TCP
communication handles) Accept Incoming Communication to accept communication initiated
by a TCP/IP peer.

• See “Communication Commands” in Chapter 10 of the ioControl User’s Guide.

Status Codes: 0 = Success
-37 = Lock port timeout.
-38 = Send timeout. For example, attempted to write to a file opened for reading.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-69 = Invalid parameter (null pointer) passed to command.
-408 = Error during file access. For example, attempted to write to a file open for reading.
-531 = Buffer full. You may be attempting to send data to the serial port faster than the port can
send and buffer data. Try a faster baud rate or a delay between Transfer/Transmit commands.

Note: This command does not automatically append the current end-of-message (EOM) delimiter for
the communication handle to the end of the string. Only the string passed will be transmitted. If

Argument 1
From
String Literal
String Variable

Argument 2
Communication Handle
Communication Handle

Argument 3
Put Status in
Float Variable
Integer 32 Variable

Transmit String
From XMIT_MSG String Variable

Communication Handle UIO_5 Communication Handle
Put Status in COMM_STATUS Integer 32 Variable
T-22 ioControl Command Reference

T

the EOM is needed (for example, to be received on the other end using Receive String), use
Append Character to String to append the EOM to the string.

See Also: Receive String (page R-19), Transmit/Receive String (page T-20), Open Outgoing Communication
(page O-4), Append Character to String (page A-9), Get End-Of-Message Terminator (page G-51),
Set End-Of-Message Terminator (page S-22)

Transmit String Table
Communication Action

Function: Sends a specific number of string table values to another entity, such as another control engine
or a file.

Typical Use: Efficient method of writing delimited data to a file.

Arguments:

Standard
Example:

OptoScript
Example:

TransmitStrTable(Length, Start at Index, Of Table, Communication Handle)
Xmit_status = TransmitStrTable(Table_length, 0, Peer_data_table, UIO_5);

This is a function command; it returns one of the status codes listed below.

Notes: • Each string that is transmitted will be followed by the current end-of-message character for
this communication handle.

• Use Set End-of-Message Terminator to specify the end-of-message character to use. The
default is 13 (carriage return).

• Use Transmit Character first to send a destination index, table ID, etc. if desired. These
values could be sent as fixed length or carriage return delimited.

Dependencies: Must first use Open Outgoing Communication to establish a session, or (for TCP communication
handles) Listen for Incoming Communication and Accept Incoming Communication to accept a
session initiated by a TCP/IP peer. See “Communication Commands” in Chapter 10 of the
ioControl User’s Guide for more information.

Status Codes: 0 = Success
-3 = Invalid length. Length (Argument 1) is greater than number of elements in the source table.
-12 = Invalid table index. Index was negative or greater than or equal to the table size.

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
Start at Index
Integer 32 Literal
Integer 32 Variable

Argument 3
Of Table
String Table

Argument 4
Communication Handle
Communication Handle

Argument 5
Put Status in
Float Variable
Integer 32 Variable

Transmit String Table
Length Table_length Integer 32 Variable

Start at Index 0 Integer 32 Literal
Of Table Peer_data_table String Table

Communication Handle UIO_5 Communication Handle
Put Status in Xmit_status Integer 32 Variable
ioControl Command Reference T-23

-37 = Lock port timeout.
-38 = Send timeout. For example, attempted to write to a file opened for reading.
-42 = Invalid limit.
-52 = Invalid connection—not opened. The communication handle may have been closed by a
previous command that failed. Check status codes returned on other communication handle
commands.
-69 = Invalid parameter (null pointer) passed to command.
-531 = Buffer full. You may be attempting to send data to the serial port faster than the port can
send and buffer data. Try a faster baud rate or a delay between Transfer/Transmit commands.

Queue Errors: -12 = Invalid table index value—index was negative or greater than or equal to the table size.

See Also: Receive String Table (page R-21), Receive Numeric Table (page R-16), Receive Pointer Table
(page R-17), Transmit String (page T-22), Transmit Character (page T-13), Transmit Pointer Table
(page T-16), Transmit Numeric Table (page T-15), Set End-Of-Message Terminator
(page S-22)Transfer N Characters (page T-11)

Truncate
Mathematical Action

Function: Discards the fractional part of a number without changing the whole part.

Typical Use: To separate the whole part of a number from the fractional part.

Arguments:

Standard
Example:

OptoScript
Example:

Truncate(Value)
Flow_Total_Integer = Truncate(Flow_Total_Raw);

This is a function command; it returns the whole part of the truncated number.

Notes: Subtracting the resulting integer from the float will remove the whole part from the
fractional part.

See Also: Round (page R-24)

Argument 1
[Value]
Down Timer Variable
Float Literal
Float Variable
Up Timer Variable

Argument 2
Put Result in
Down Timer Variable
Float Variable
Integer 32 Variable
Integer 64 Variable
Up Timer Variable

Truncate
Flow_Total_Raw Float Variable

Put Result in Flow_Total_Integer Integer 32 Variable
T-24 ioControl Command Reference

T

Turn Off
Digital Point Action

Function: To turn off a standard digital output point.

Typical Use: To deactivate devices connected to digital outputs, such as motors, pumps, lights, etc.

Details: • Standard digital only. For high-density digital, see Turn Off HDD Module Point.
• Turns off the specified output.
• The output will remain off until directed otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

TurnOff(Output)
TurnOff(The_Lights);

This is a procedure command; it does not return a value.
In OptoScript code, you could also assign the output a zero value to turn it off:
The_Lights = 0;

Notes: • To cause an output on one I/O unit to assume the state of an input on another I/O unit, use
Move in standard commands or an assignment in OptoScript code.

• Use NOT to cause an output on one I/O unit to assume the opposite state of an input on
another I/O unit.

• Speed Tip: Use Set Digital-64 I/O Unit from MOMO Masks or Set Mixed I/O Unit from
MOMO Masks to turn off all outputs at once.

Dependencies: If the output point or the I/O unit is disabled, no action will occur at the output point (XVAL). The
IVAL, however, will be updated.

See Also: Set Digital-64 I/O Unit from MOMO Masks (page S-19), Set Mixed I/O Unit from MOMO Masks
(page S-55), Turn On (page T-27)

Argument 1
[Value]
Digital Output

Turn Off
The_Lights Digital Output
ioControl Command Reference T-25

Turn Off HDD Module Point
High Density Digital Module Action

Function: To turn off a specific point on a high-density digital output module.

Typical Use: To turn off one point only.

Details: Works only on high-density digital output modules, not on standard digital output modules.

Arguments:

Standard
Example:

OptoScript
Example:

TurnOffHddModulePoint(I/O Unit, Module Number, Point Number)
Status_Code = TurnOffHddModulePoint(Installation_42, 8, Meter);

This is a function command; it returns one of the status codes shown below.

Notes: • To turn on or off several points at once, use Set HDD Module from MOMO Masks.
• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,

and see form #1547, the SNAP High-Density Digital Module User’s Guide.

Status Codes: 0 = Success
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Turn On HDD Module Point (page T-28), Set HDD Module from MOMO Masks (page S-23)

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Module Number
Integer 32 Literal]
Integer 32 Variable

Argument 3
Point Number
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status In
Integer 32 Variable

Turn Off HDD Module Point
I/O Unit Installation_42 SNAP-ENET-S64

Module Number 8 Integer 32 Literal
Point Number Meter Integer 32 Variable
Put Status in Status_Code Integer 32 Variable
T-26 ioControl Command Reference

T

Turn On
Digital Point Action

Function: To turn on a standard digital output point.

Typical Use: To activate devices connected to digital outputs, such as motors, pumps, lights, etc.

Details: • Standard digital only. For high-density digital, see Turn On HDD Module Point.
• Turns on the specified output.
• The output will remain on until directed otherwise.

Arguments:

Standard
Example:

OptoScript
Example:

TurnOn(Output)
TurnOn(INLET_VALVE);

This is a procedure command; it does not return a value.
In OptoScript code, you could also assign the output any non-zero value to turn it on:
INLET_VALVE = -1;

Notes: • To cause an output on one I/O unit to assume the state of an input on another I/O unit, use
Move in standard commands or an assignment in OptoScript code.

• Use NOT to cause an output on one I/O unit to assume the opposite state of an input on
another I/O unit.

• Speed Tip: Use Set Digital-64 I/O Unit from MOMO Masks or Set Mixed I/O Unit from
MOMO Masks to turn on all outputs at once.

Dependencies: If the output point or the I/O unit is disabled, no action will occur at the output point (XVAL). The
IVAL, however, will be updated.

See Also: Set Digital-64 I/O Unit from MOMO Masks (page S-19), Set Mixed I/O Unit from MOMO Masks
(page S-55), Turn Off (page T-25)

Argument 1
[Value]
Digital Output

Turn On
INLET_VALVE Digital Output
ioControl Command Reference T-27

Turn On HDD Module Point
High Density Digital Module Action

Function: To turn on a specific point on a high-density digital output module.

Typical Use: To turn on one point only.

Details: Works only on high-density digital output modules, not on standard digital output modules.

Arguments:

Standard
Example:

OptoScript
Example:

TurnOnHddModulePoint(I/O Unit, Module Number, Point Number)
Status_Code = TurnOnHddModulePoint(Installation_42, 8, Meter);

This is a function command; it returns one of the status codes shown below.

Notes: • To turn on or off several points at once, use Set HDD Module from MOMO Masks.
• See “High Density Digital Module Commands” in Chapter 10 of the ioControl User’s Guide,

and see form #1547, the SNAP High-Density Digital Module User’s Guide.

Status Codes: 0 = Success
-43 = Received a NACK from the I/O unit.
-58 = No data received. Make sure I/O unit has power.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Turn Off HDD Module Point (page T-26), Set HDD Module from MOMO Masks (page S-23)

Argument 1
I/O Unit
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Module Number
Integer 32 Literal
Integer 32 Variable

Argument 3
Point Number
Integer 32 Literal
Integer 32 Variable

Argument 4
Put Status In
Integer 32 Variable

Turn On HDD Module Point
I/O Unit Installation_42 SNAP-ENET-S64

Module Number 8 Integer 32 Literal
Point Number Meter Integer 32 Variable
Put Status in Status_Code Integer 32 Variable
T-28 ioControl Command Reference

U
 U
Up Timer Target Time Reached?
Timing Condition

Function: To check if an up timer has reached its target time.

Typical Use: Used to go to the next step in a sequential process.

Details: • Up timers do not stop timing when they reach their target value.
• Use the Set Up Timer Target Value command to set the target time.

Arguments:

Standard
Example:

OptoScript
Example:

HasUpTimerReachedTargetTime(Up Timer)
if (HasUpTimerReachedTargetTime(OVEN_TIMER)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: See “Timing Commands” in Chapter 10 of the ioControl User’s Guide for more information on
using timers.

See Also: Start Off-Pulse (page S-96), Stop Timer (page S-102), Continue Timer (page C-39), Pause Timer
(page P-1), Set Up Timer Target Value (page S-86)

Argument 1
Up Timer
Up Timer Variable

Up Timer Target Time Reached?
Up Timer OVEN_TIMER Up Timer Variable
ioControl Command Reference U-1

U-2 ioControl Command Reference

V
 V
Variable False?
Logical Condition

Function: To determine if the specified variable is zero.

Typical Use: To determine if further processing should take place.

Details: Evaluates True if the value of the integer variable is zero, False otherwise. False is defined as
zero.

Arguments:

Standard
Example:

OptoScript
Example:

IsVariableFalse(Variable)
if (IsVariableFalse(Pressure_Difference)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.
A shorter way to achieve the same result in OptoScript code is to use the following:
if (not Pressure_Difference) then

See Also: Variable True? (page V-2)

Argument 1
Is
Float Variable
Integer 32 Variable
Integer 64 Variable

Is Pressure_Difference Integer 32 Variable
Variable False?
ioControl Command Reference V-1

Variable True?
Logical Condition

Function: To determine if the specified variable is non-zero.

Typical Use: To determine if further processing should take place.

Details: Evaluates True if the value of the integer is not zero, False otherwise. True is defined as any
non-zero value.

Arguments:

Standard
Example:

OptoScript
Example:

VariableTrue(Variable)
if (IsVariableTrue(Pressure_Difference)) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.
A shorter way to achieve the same result in OptoScript code is to use the following:
if (Pressure_Difference) then

See Also: Variable False? (page V-1)

Argument 1
Is
Float Variable
Integer 32 Variable
Integer 64 Variable

Is Pressure_Difference Integer 32 Variable
Variable True?
V-2 ioControl Command Reference

V

Verify Checksum on String
String Action

Function: To check the validity of a received message.

Typical Use: Ensuring the integrity of the data in a message prior to using it.

Details: • Checksum type is eight-bit.
• The Start Value is also known as the “seed.” It is usually zero.
• All characters except the last byte are included in the verification.
• The last byte must be the checksum.

Arguments:

Standard
Example:

OptoScript
Example:

VerifyChecksumOnString(Start Value, On String)
CKSUM_STATUS = VerifyChecksumOnString(0, RESPONSE_MSG);

This is a function command; it returns one of the status codes listed below.

Status Codes: 0 = No error; valid checksum.
-2 = Invalid checksum; checksum verification failed.
-44 = String too short or string was empty.

Notes: The checksum used by this command is an 8-bit (one byte) value. The method used to calculate
the checksum is:

1 Take the numerical sum of the ASCII numerical representation of each character in the
string.

2 Divide the result by 256.

3 The integer remainder is the 8-bit checksum.

See Also: Generate Checksum on String (page G-1)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Status in
Integer 32 Variable

Verify Checksum on String
Start Value 0 Integer 32 Literal
On String RESPONSE_MSG String Variable

Put Status In CKSUM_STATUS Integer 32 Variable
ioControl Command Reference V-3

Verify Forward CCITT on String
String Action

Function: To check the validity of a received message.

Typical Use: Ensuring the integrity of the data in a message prior to using it.

Details: • CRC type is 16-bit forward CCITT.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• All characters except the last two are included in the verification.
• The last two characters must be the CRC.

Arguments:

Standard
Example:

OptoScript
Example:

VerifyForwardCcittOnString(Start Value, On String)
CRC_STATUS = VerifyForwardCcittOnString(-1, RESPONSE_MSG);

This is a function command; it returns one of the status codes listed below.

Status Codes: 0 = No error; valid checksum.
-2 = Invalid checksum; checksum verification failed.
-44 = String too short or string was empty.

See Also: Verify Reverse CCITT on String (page V-6), Generate Forward CCITT on String (page G-3)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Status in
Integer 32 Variable

Verify Forward CCITT on String
Start Value -1 Integer 32 Literal
On String RESPONSE_MSG String Variable

Put Status In CRC_STATUS Integer 32 Variable
V-4 ioControl Command Reference

V

Verify Forward CRC-16 on String
String Action

Function: To check the validity of a received message.

Typical Use: Ensuring the integrity of the data in a message prior to using it.

Details: • CRC type is 16-bit forward.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• All characters except the last two are included in the verification.
• The last two characters must be the CRC.

Arguments:

Standard
Example:

OptoScript
Example:

VerifyForwardCrc16OnString(Start Value, On String)
CRC_STATUS = VerifyForwardCrc16OnString(-1, RESPONSE_VSS);

This is a function command; it returns one of the status codes listed below.

Status Codes: 0 = No error; valid checksum.
-2 = Invalid checksum; checksum verification failed.
-44 = String too short or string was empty.

See Also: Verify Reverse CRC-16 on String (page V-7), Generate Forward CRC-16 on String (page G-4)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Status in
Integer 32 Variable

Verify Forward CRC-16 on String
Start Value -1 Integer 32 Literal
On String RESPONSE_VSS String Variable

Put Status in CRC_STATUS Integer 32 Variable
ioControl Command Reference V-5

Verify Reverse CCITT on String
String Action

Function: To check the validity of a received message.

Typical Use: Ensuring the integrity of the data in a message prior to using it.

Details: • CRC type is 16-bit reverse CCITT.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• All characters except the last two are included in the verification.
• The last two characters must be the CRC.

Arguments:

Standard
Example:

OptoScript
Example:

VerifyReverseCcittOnString(Start Value, On String)
CRC_STATUS = VerifyReverseCcittOnString(-1, RESPONSE_MSG);

This is a function command; it returns one of the status codes listed below.

Status Codes: 0 = No error; valid checksum.
-2 = Invalid checksum; checksum verification failed.
-44 = String too short or string was empty.

See Also: Verify Forward CCITT on String (page V-4), Generate Reverse CCITT on String (page G-7)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Status in
Integer 32 Variable

Verify Reverse CCITT on String
Start Value -1 Integer 32 Literal
On String RESPONSE_MSG String Variable

Put Status in CRC_STATUS Integer 32 Variable
V-6 ioControl Command Reference

V

Verify Reverse CRC-16 on String
String Action

Function: To check the validity of a received message.

Typical Use: Ensuring the integrity of the data in a message prior to using it.

Details: • CRC type is 16-bit reverse.
• The Start Value is also known as the “seed.” It is usually zero or -1.
• All characters except the last two are included in the verification.
• The last two characters must be the CRC.

Arguments:

Standard
Example:

OptoScript
Example:

VerifyReverseCrc16OnString(Start Value, On String)
CRC_STATUS = VerifyReverseCrc16OnString(-1, RESPONSE_MSG);

This is a function command; it returns one of the status codes listed below.

Status Codes: 0 = No error; valid checksum.
-2 = Invalid checksum; checksum verification failed.
-44 = String too short or string was empty.

See Also: Verify Forward CRC-16 on String (page V-5), Generate Reverse CRC-16 on String (page G-8)

Argument 1
Start Value
Integer 32 Literal
Integer 32 Variable

Argument 2
On String
String Literal
String Variable

Argument 3
Put Status in
Integer 32 Variable

Verify Reverse CRC-16 on String
Start Value -1 Integer 32 Literal
On String RESPONSE_MSG String Variable

Put Status in CRC_STATUS Integer 32 Variable
ioControl Command Reference V-7

V-8 ioControl Command Reference

W
 W
Within Limits?
Logical Condition

Function: To determine if a value is greater than or equal to a low limit and less than or equal to a high limit.

Typical Use: To check if a temperature is within an acceptable range.

Details: • Determines if Argument 1 is no less than Argument 2 and no greater than Argument 3.
Evaluates True if Argument 1 falls between Argument 2 and Argument 3 or equals either
value. Evaluates False if Argument 1 is less than Argument 2 or greater than Argument 3.
Examples:

Arguments:

Standard
Example:

This example evaluates True if Current_Temp is greater than or equal to Coldest_Temp and less
than or equal to Hottest_Temp. It evaluates False otherwise.

OptoScript
Example:

IsWithinLimits(Value, Low Limit, High Limit)
if IsWithinLimits(Current_Temp, Coldest_Temp, Hottest_Temp) then

This is a function command; it returns a value of true (non-zero) or false (0). The returned value
can be consumed by a control structure (as in the example shown) or by a variable, I/O point, etc.
See Chapter 11 of the ioControl User’s Guide for more information.

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide.
• Use to replace two conditions: Less Than or Equal? and Greater Than or Equal?

See Also: Less Than or Equal? (page L-3) Greater Than or Equal? (page G-148)

Argument 1 Argument 2 Argument 3 Result
0.0 0.0 100.0 True

-32768 0.0 100.0 False
72.1 68.0 72.0 False
-1.0 -45.0 45.0 True

Argument 1
Is
Analog Input
Analog Output
Down Timer Variable
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable
Up Timer Variable

Argument 2
> =
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
And < =
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Is Current_Temp Float Variable
Within Limits?

>= Coldest_Temp Float Variable
And <= Hottest_Temp Float Variable
ioControl Command Reference W-1

Write I/O Unit Configuration to EEPROM
I/O Unit Action

Function: Stores all point features, watchdog settings, and other configurations to flash memory (EEPROM)
at the I/O unit.

Typical Use: Allows the I/O unit to be fully functional at powerup. No further configuration by a control engine
is needed.

Details: • Instead of using this command in the strategy, it is better to store configurations to flash
using ioManager (see the ioManager User’s Guide for instructions) or using ioControl in
Debug mode (see the ioControl User’s Guide).

• This command takes about two seconds to complete and causes the connection to the I/O
unit to be closed. If this command is used in the strategy, it should be placed where it will
execute just once each time the program runs—typically in the Powerup chart after all
special configuration commands are sent to the I/O unit. After a delay, use Enable
Communication to I/O Unit to open the connection again.

• CAUTION: If you use this command in a strategy, make certain it is not in a loop. You can
literally wear out the hardware if you write to flash too many times.

Arguments:

Standard
Example:

OptoScript
Example:

WriteIoUnitConfigToEeprom(On I/O Unit)
WriteIoUnitConfigToEeprom(FURNACE_CONTROL);

This is a procedure command; it does not return a value.

Queue Errors: -52 = Invalid connection—not opened
-534 = Attempts to communicate with I/O unit failed. Make sure I/O unit is turned on.

Argument 1
On I/O Unit
B100
B200
B3000 (Analog)
B3000 (Digital)
G4A8R, G4RAX
G4D16R
G4D32RS
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET, SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Write I/O Unit Configuration to EEPROM
On I/O Unit FURNACE_CONTROL SNAP-UP1-ADS
W-2 ioControl Command Reference

W

Write Number to I/O Unit Memory Map
I/O Unit—Memory Map Action

Function: Write a value from an integer 32 or float variable into an Opto 22 SNAP Ultimate, SNAP Ethernet,
or SNAP Simple I/O memory map address.

Typical Use: To access areas of the memory map not directly supported by ioControl.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• This command works with SNAP Ultimate, SNAP Ethernet, and SNAP Simple I/O units that
have been configured in ioManager or ioControl. The control engine must be on the I/O unit
or connected to the I/O unit for this command to work.

• If you are writing to the Scratch Pad area of the memory map, use the Scratch Pad
commands instead (Set I/O Unit Scratch Pad Integer 32 Element and related commands).

Arguments:

Standard
Example:

OptoScript
Example:

WriteNumToIoUnitMemMap(I/O Unit, Mem Address, Variable)
STATUS = WriteNumToIoUnitMemMap(MYIOUNIT, 0xFFFFFFFF, MYINTVAR);

This is a function command; it returns one of the status codes listed below.

Notes: • Use hex integer display in ioControl for easy entering of memory map addresses. Be sure
there are no spaces within the memory map address.

• The control engine does not convert the variable type to match the area of memory map
being written to. The control engine has no knowledge of which memory map areas are
integers and which are floats. You must write the correct type of data to the specified
memory map address.

For example, if you are using the SNAP PID module (SNAP-PID-V), use an integer to write the
setpoint, which is in counts, and use a float to write the analog output. As another example,
unpredictable results would occur if you try to write an integer 32 variable to the analog
point area of the memory map. Use a float variable instead. See the SNAP Ethernet-Based

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Mem Address
Integer 32 Literal
Integer 32 Variable

Argument 3
From
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 4
Put Status in
Integer 32 Variable

Write Number to I/O Unit Memory Map
I/O Unit MYIOUNIT SNAP-UP1-ADS

Mem Address 0xFFFFFFFF Integer 32 Literal
From MYINTVAR Integer 32 Variable

Put Status in STATUS Integer 32 Variable
ioControl Command Reference W-3

I/O Units Protocols and Programming Guide (Opto 22 form 1465) to determine the data types
for specific areas of the memory map.

Status Codes: 0 = Success
-36 = Tried to write a float value to a memory map address that takes only integer values.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-56 = Invalid memory map address or read-only address.
-81 = Error writing to memory map. Invalid memory map address.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Write Numeric Table to I/O Unit Memory Map (page W-4), Read Numeric Table from I/O Unit
Memory Map (page R-7), Read Number from I/O Unit Memory Map (page R-5), Set I/O Unit
Scratch Pad Float Element (page S-32), Set I/O Unit Scratch Pad Integer 32 Element (page S-36)

Write Numeric Table to I/O Unit Memory Map
I/O Unit—Memory Map Action

Function: Write a range of values from an integer 32 or float table into an Opto 22 SNAP Ultimate, SNAP
Ethernet, or SNAP Simple I/O memory map address.

Typical Use: To access areas of the memory map not directly supported by ioControl.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• This command works with SNAP Ultimate, SNAP Ethernet, and SNAP Simple I/O units that
have been configured in ioManager or ioControl. The control engine must be on the I/O unit
or connected to the I/O unit for this command to work.

• If you are writing to the Scratch Pad area of the memory map, use the Scratch Pad
commands instead (Set I/O Unit Scratch Pad Integer 32 Table and related commands).

• Argument 1, Length, is the number of table elements and also the length of data in the
memory map in quads (groups of four bytes).

• Argument 4, Mem address, includes only the last eight hex digits (four bytes) of the memory
map address (the lower 32 bits).
W-4 ioControl Command Reference

W

Arguments:

Standard
Example:

OptoScript
Example:

WriteNumTableToIoUnitMemMap(Length, Start Index, I/O Unit, Mem Address, Table)
STATUS = WriteNumTableToIoUnitMemMap(0x10, 0x5, MYIOUNIT, 0xFFFFFFFF,
MYINTTABLE);

This is a function command; it returns one of the status codes listed below.
In OptoScript, you can use hex in some arguments and decimal in others, for example:
STATUS = WriteNumTableToIoUnitMemMap(16, 5, MYIOUNIT, 0xFFFFFFFF,
MYINTTABLE);

Notes: • Use hex integer display for easy entering of memory map addresses. When you display
integers in hex, note that the length of data and start index arguments are also in hex.

• The control engine does not convert the table type to match the area of the memory map
being written to. The control engine has no knowledge of which memory map areas are
integers and which are floats. You must write the correct type of data to the specified
memory map address.

For example, unpredictable results would occur if you try to write an integer 32 table to the
analog bank area of the memory map. A float table should be used instead. See the SNAP
Ethernet-Based I/O Units Protocols and Programming Guide (Opto 22 form 1465) to
determine the data types for specific areas of the memory map.

Status Codes: 0 = Success
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 4
Mem Address
Integer 32 Literal
Integer 32 Variable

Argument 5
From
Float Table
Integer 32 Table

Argument 6
Put Status in
Integer 32 Variable

Write Numeric Table to I/O Unit Memory Map
Length 0x10 Integer 32 Literal

Start Index 0x5 Integer 32 Literal
I/O Unit MYIOUNIT SNAP-UP1-ADS

Mem Address 0xFFFFFFFF Integer 32 Literal
From MYINTTABLE Integer 32 Table

Put Status in STATUS Integer 32 Variable
ioControl Command Reference W-5

-56 = Invalid memory map address or read-only address.
-81 = Error writing to memory map. Invalid memory map address.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Read Number from I/O Unit Memory Map (page R-5), Read Numeric Table from I/O Unit Memory
Map (page R-7), Write Number to I/O Unit Memory Map (page W-3), Set I/O Unit Scratch Pad
Float Table (page S-34), Set I/O Unit Scratch Pad Integer 32 Table (page S-38)
W-6 ioControl Command Reference

W

Write String Table to I/O Unit Memory Map
I/O Unit—Memory Map Action

Function: Write a range of values from a string table into the Opto 22 SNAP Ultimate, SNAP Ethernet, or
SNAP Simple I/O memory map.

Typical Use: To access areas of the memory map not directly supported by ioControl.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• This command works with SNAP Ultimate, SNAP Ethernet, and SNAP Simple I/O units that
have been configured in ioManager or ioControl. The control engine must be on the I/O unit
or connected to the I/O unit for this command to work.

• If you are writing to the Scratch Pad area of the memory map, use the Scratch Pad
commands instead (Set I/O Unit Scratch Pad String Table and related commands).

• Argument 1, Length, is the number of table elements.
• Argument 4, Mem address, includes only the last eight digits of the memory map address

(the lower 32 bits).
• This command treats strings like chunks of binary data. Each string must be divisible by 4, or

you receive a -70 error. Strings are simply appended together and written to the memory
map location specified in Argument 4.

Arguments:

Standard
Example:

Argument 1
Length
Integer 32 Literal
Integer 32 Variable

Argument 2
Start Index
Integer 32 Literal
Integer 32 Variable

Argument 3
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 4
Mem Address
Integer 32 Literal
Integer 32 Variable

Argument 5
From
String Table

Argument 6
Put Status in
Integer 32 Variable

Write String Table to I/O UnitMemory Map
Length 0x10 Integer 32 Literal

Start Index 0x5 Integer 32 Literal
I/O Unit MYIOUNIT SNAP-UP1-ADS

Mem Address 0xFFFFFFFF Integer 32 Literal
From MYSTRINGTABLE String Table

Put Status in STATUS Integer 32 Variable
ioControl Command Reference W-7

OptoScript
Example:

WriteStrTableToIoUnitMemMap(Length, Start Index, I/O Unit, Mem Address, Table)
STATUS = WriteStrTableToIoUnitMemMap(0x10, 0x5, MYIOUNIT, 0xFFFFFFFF,
MYSTRINGTABLE);

This is a function command; it returns one of the status codes listed below.
In OptoScript, you can use hex in some arguments and decimal in others, for example:
STATUS = WriteStrTableToIoUnitMemMap(16, 5, MYIOUNIT, 0xFFFFFFFF,
MYSTRINGTABLE);

Notes: • Use hex integer display for easy entering of memory map addresses. When you display
integers in hex, note that the length of data and start index arguments are also in hex.

• The control engine does not convert the table type to match the area of the memory map
being written to. The control engine has no knowledge of which memory map areas are
strings and which are other formats. You must write the correct type of data to the
specified memory map address.

For example, unpredictable results would occur if you try to write a string table to the analog
bank area of the memory map. A float table should be used instead. See the SNAP
Ethernet-Based I/O Units Protocols and Programming Guide (Opto 22 form 1465) to
determine the data types for specific areas of the memory map.

Status Codes: 0 = Success
-3 = Invalid length. Length must be greater than zero.
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-56 = Invalid memory map address or read-only address.
-70 = Not enough data supplied. Each string must be divisible by 4.
-81 = Error writing to memory map. Invalid memory map address.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Read String from I/O Unit Memory Map (page R-9), Read String Table from I/O Unit Memory Map
(page R-11), Write String to I/O Unit Memory Map (page W-9), Set I/O Unit Scratch Pad String
Table (page S-41), Set I/O Unit Scratch Pad String Element (page S-40)
W-8 ioControl Command Reference

W

Write String to I/O Unit Memory Map
I/O Unit—Memory Map Action

Function: Write a value from a string variable into an Opto 22 SNAP Ultimate, SNAP Ethernet, or SNAP
Simple I/O memory map address.

Typical Use: To access areas of the memory map not directly supported by ioControl.

Details: • To use this command with a controller (such as a SNAP-LCE or SNAP-PAC-S1), create an I/O
Unit of the type SNAP-UP1-M64 Unit with the controller's IP address.

• This command works with SNAP Ultimate, SNAP Ethernet, and SNAP Simple I/O units that
have been configured in ioManager or ioControl. The control engine must be on the I/O unit
or connected to the I/O unit for this command to work.

• If you are writing to the Scratch Pad area of the memory map, use the Scratch Pad
commands instead (Set I/O Unit Scratch Pad String Element and related commands).

Arguments:

Standard
Example:

OptoScript
Example:

WriteStrToIoUnitMemMap(I/O Unit, Mem Address, Variable)
STATUS = WriteStrToIoUnitMemMap(MYIOUNIT, 0xFFFFFFFF, MYSTRINGVAR);

This is a function command; it returns a status code as listed below.

Notes: • Use hex integer display for easy entering of memory map addresses.
• The control engine does not convert the variable type to match the area of memory map

being written to. The control engine has no knowledge of which memory map areas are
strings and which are other formats. You must write the correct type of data to the specified
memory map address.

For example, unpredictable results would occur if you try to write a string variable to the
analog point area of the memory map. A float variable should be used instead. See the
SNAP Ethernet-Based I/O Units Protocols and Programming Guide (Opto 22 form 1465) to
determine the data types for specific areas of the memory map.

Argument 1
I/O Unit
SNAP-ENET-D64
SNAP-UP1-D64
SNAP-UP1-M64
SNAP-ENET-S64
SNAP-B3000-ENET,
SNAP-ENET-RTC
SNAP-UP1-ADS
SNAP-PAC-R1
SNAP-PAC-R2

Argument 2
Mem Address
Integer 32 Literal
Integer 32 Variable

Argument 3
From
String Literal
String Variable

Argument 4
Put Status in
Integer 32 Variable

Write String to I/O Unit Memory Map
I/O Unit MYIOUNIT SNAP-UP1-ADS

Mem Address 0xFFFFFFFF Integer 32 Literal
From MYSTRINGVAR String Variable

Put Status in STATUS Integer 32 Variable
ioControl Command Reference W-9

Status Codes: 0 = Success
-3 = Invalid length. Length must be greater than zero.
-12 = Invalid table index value—index was negative or greater than the table size.
-43 = Received a NACK from the I/O unit.
-52 = Invalid connection—not opened.
-56 = Invalid memory map address or read-only address.
-81 = Error writing to memory map. Invalid memory map address.
-93 = I/O unit not enabled. Previous communication failure may have disabled the unit
automatically. Reenable it and try again.

See Also: Write String Table to I/O Unit Memory Map (page W-7), Read String from I/O Unit Memory Map
(page R-9), Read String Table from I/O Unit Memory Map (page R-11), Set I/O Unit Scratch Pad
String Element (page S-40), Set I/O Unit Scratch Pad String Table (page S-41)
W-10 ioControl Command Reference

X
 X
XOR
Logical Action

Function: To perform a logical EXCLUSIVE OR on any two allowable values.

Typical Use: To toggle a logic state such as a digital output from True to False or False to True, or to compare
two logic states to see if they are different.

Details: • Performs a logical EXCLUSIVE OR on Argument 1 and Argument 2 and puts the result in
Argument 3. The result is True (non-zero) if either Argument 1 or Argument 2 value is
non-zero (but not both); otherwise the result is False (0). Examples:

• The result can be sent directly to a digital output if desired.

Arguments:

Standard
Example:

In this example, if SUPPLY FAN is on it will turn off, and vice versa.

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the xor operator.
Supply_Fan = Supply_Fan xor 1;

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. The example shown is
only one of many ways to use the xor operator. For more information on logical operators
in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• It is best to use only integers or digital points with this command.
• To manipulate individual bits or toggle a value between zero and another value, use Bit XOR.

Argument 1 Argument 2 Argument 3
0 0 False
0 1 True
1 0 True
1 1 False
0 -1 True
-1 0 True
1 -1 False

22 0 True
22 22 False

Argument 1
[Value]
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
With
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 3
Put Result in
Digital Output
Float Variable
Integer 32 Variable
Integer 64 Variable

XOR
SUPPLY_FAN Digital Output

With 1 Integer 32 Literal
Put Result in SUPPLY_FAN Digital Output
ioControl Command Reference X-1

See Also: Bit XOR (page B-18), Not Equal? (page N-4) Turn On (page T-27), Turn Off (page T-25), On?
(page O-3) Off? (page O-1)

XOR?
Logical Condition

Function: To determine if two values are at opposite True/False states.

Typical Use: To determine if a logic value has changed state.

Details: • Determines if Argument 1 and Argument 2 have different True/False states. Evaluates True if
one item is True (non-zero, on) and the other is False (zero, off). Evaluates False if both items
are True or if both items are False. Examples:

• Functionally equivalent to the Not Equal? condition when using allowable values.

Arguments:

Standard
Example:

OptoScript
Example:

OptoScript doesn’t use a command; the function is built in. Use the xor operator.
if (Limit_Switch_Prev xor Limit_Switch) then

Notes: • See “Logical Commands” in Chapter 10 of the ioControl User’s Guide. The example shown is
only one of many ways to use the xor operator. For more information on logical operators
in OptoScript code, see Chapter 11 of the ioControl User’s Guide.

• It is best to use only integers or digital points with this command.
• To test two values for equivalent True/False states, use the False exit.

See Also: NOT (page N-2), AND? (page A-8), OR? (page O-7)

Argument 1 Argument 2 Result
0 0 False
0 1 True
1 0 True
1 1 False
0 -1 True
-1 0 True
-1 -1 False
22 0 True
22 -4 False

Argument 1
Is
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Argument 2
Is
Digital Input
Digital Output
Float Literal
Float Variable
Integer 32 Literal
Integer 32 Variable
Integer 64 Literal
Integer 64 Variable

Is Limit_Switch1_Prev Integer 32 Variable
XOR?

Is Limit_Switch1 Digital Input
X-2 ioControl Command Reference

APPENDIX
Opto 22 Brain Families
Use this table to determine which family an Opto 22 brain belongs to:

Part number mistic
multi-function

mistic
simple

Ethernet/
Optomux

SNAP
Ethernet
I/O (EIO)

SNAP
Ultimate
I/O (UIO)

Simple
I/O (SIO)

mistic
sub-family

B3000 mixed

B200 analog

B100 digital

E1

E2

G4A8R analog

G4D16R digital

G4D32RS

SNAP-B3000-ENET

SNAP-BRS

SNAP-ENET-D64

SNAP-ENET-RTC

SNAP-ENET-S64

SNAP-UP1-ADS

SNAP-UP1-D64

SNAP-UP1-M64
ioControl Command Reference App-1

App-2 ioControl Command Reference

Index
A
Absolute Value, A-1
Accept Incoming Communication, A-2
Add, A-3
Add Message to Queue, A-4
Add User Error to Queue, A-5
Add User I/O Unit Error to Queue, A-6
analog point

Calculate & Set Analog Gain, C-1
Calculate & Set Analog Offset, C-2
Get & Clear Analog Filtered Value, G-14
Get & Clear Analog Maximum Value, G-15
Get & Clear Analog Minimum Value, G-16
Get & Clear Analog Totalizer Value, G-17
Get Analog Filtered Value, G-38
Get Analog Maximum Value, G-39
Get Analog Minimum Value, G-40
Get Analog Square Root Filtered Value,

G-41
Get Analog Square Root Value, G-42
Get Analog Totalizer Value, G-43
Ramp Analog Output, R-3
Set Analog Filter Weight, S-7
Set Analog Gain, S-8
Set Analog Load Cell Fast Settle Level, S-9
Set Analog Load Cell Filter Weight, S-10
Set Analog Offset, S-11
Set Analog Totalizer Rate, S-12
Set Analog TPO Period, S-14

AND, A-7
AND?, A-8
Append Character to String, A-9
Append String to String, A-10
Arccosine, A-11
Arcsine, A-12
Arctangent, A-13

B
Bit AND, B-1
Bit AND?, B-3
Bit Clear, B-4
Bit NOT, B-5
Bit NOT?, B-7
Bit Off?, B-8
Bit On?, B-9
Bit OR, B-10
Bit OR?, B-12
Bit Rotate, B-13
Bit Set, B-14
Bit Shift, B-15
Bit Test, B-17
Bit XOR, B-18
Bit XOR?, B-20

C
Calculate & Set Analog Gain, C-1
Calculate & Set Analog Offset, C-2
Calculate Strategy CRC, C-3
Call Chart, C-4
Calling Chart Running?, C-5
Calling Chart Stopped?, C-5
Calling Chart Suspended?, C-6
Caused a Chart Error?, C-7
Caused an I/O Unit Error?, C-8
chart

Call Chart, C-4
Calling Chart Running?, C-5
Calling Chart Stopped?, C-5
Calling Chart Suspended?, C-6
Chart Running?, C-9
Chart Stopped?, C-10
Chart Suspended?, C-11
Continue Calling Chart, C-37
ioControl Command Reference Index-1

Continue Chart, C-38
Get Chart Status, G-45
Start Chart, S-93
Stop Chart, S-99
Suspend Chart, S-106

Chart Running?, C-9
Chart Stopped?, C-10
Chart Suspended?, C-11
Clamp Float Table Element, C-12
Clamp Float Variable, C-13
Clamp Integer 32 Table Element, C-14
Clamp Integer 32 Variable, C-15
Clamp Mistic PID Output, C-16
Clamp Mistic PID Setpoint, C-17
Clear All Errors, C-18
Clear All Event Latches, C-19
Clear All Latches, C-20
Clear Communication Receive Buffer, C-21
Clear Counter, C-22
Clear Event Latch, C-23
Clear HDD Module Off-Latches, C-24
Clear HDD Module On-Latches, C-25
Clear Off-Latch, C-26
Clear On-Latch, C-27
Clear Pointer, C-28
Clear Pointer Table Element, C-28
Clear Receive Buffer, C-29
Close Communication, C-29
Comment (Block), C-30
Comment (OptoControl Conversion Issue),

C-31
Comment (Single Line), C-31
communication

Accept Incoming Communication, A-2
Clear Communication Receive Buffer, C-21
Clear Receive Buffer, C-29
Close Communication, C-29
Communication Open?, C-32
Get Communication Handle Value, G-46
Get End-Of-Message Terminator, G-51
Get Number of Characters Waiting, G-101
I/O

Convert Mistic I/O Hex String to Float,
C-45

Convert Number to Mistic I/O Hex String,
C-49

Transmit/Receive Mistic I/O Hex String
with Checksum, T-18

Listen for Incoming Communication, L-5
Open Outgoing Communication, O-4
Receive Character, R-13
Receive N Characters, R-14
Receive Numeric Table, R-16
Receive Pointer Table, R-17
Receive String, R-19
Receive String Table, R-21
Send Communication Handle Command,

S-2
Set Communication Handle Value, S-15
Set End-Of-Message Terminator, S-22
Transfer N Characters, T-11
Transmit Character, T-13
Transmit NewLine, T-14
Transmit Numeric Table, T-15
Transmit PointerTable, T-16
Transmit String, T-22
Transmit String Table, T-23
Transmit/Receive String, T-20

Communication Open?, C-32
Communication to All I/O Points Enabled?,

C-33
Communication to All I/O Units Enabled?,

C-34
Compare Strings, C-35
Complement, C-36
Continue Calling Chart, C-37
Continue Chart, C-38
Continue Timer, C-39
control engine

Calculate Strategy CRC, C-3
Erase Files in Permanent Storage, E-18
Get Available File Space, G-44
Get Control Engine Address, G-46
Get Control Engine Type, G-47
Get Firmware Version, G-55
Load Files From Permanent Storage, L-7
Retrieve Strategy CRC, R-23
Save Files To Permanent Storage, S-1

Convert Float to String, C-40
Convert Hex String to Number, C-41
Convert IEEE Hex String to Number, C-42
Convert Integer 32 to IP Address String, C-43
Convert IP Address String to Integer 32, C-44
Convert Mistic I/O Hex String to Float, C-45
Convert Number to Formatted Hex String,

C-46
Index-2 ioControl Command Reference

Convert Number to Hex String, C-48
Convert Number to Mistic I/O Hex String, C-49
Convert Number to String, C-50
Convert Number to String Field, C-51
Convert String to Float, C-52
Convert String to Integer 32, C-54
Convert String to Integer 64, C-55
Convert String to Lower Case, C-56
Convert String to Upper Case, C-57
Copy Current Error to String, C-58
Copy Date to String (DD/MM/YYYY), C-59
Copy Date to String (MM/DD/YYYY), C-60
Copy Time to String, C-61
copy, see Move, M-6
Cosine, C-62

D
Decrement Variable, D-1
Delay (mSec), D-2
Delay (Sec), D-3
digital point

Clear All Latches, C-20
Clear Counter, C-22
Clear Off-Latch, C-26
Clear On-Latch, C-27
Generate N Pulses, G-5
Get & Clear Counter, G-18
Get & Clear Off-Latch, G-25
Get & Clear On-Latch, G-26
Get & Restart Off-Pulse Measurement,

G-27
Get & Restart Off-Time Totalizer, G-28
Get & Restart On-Pulse Measurement,

G-29
Get & Restart On-Time Totalizer, G-30
Get & Restart Period, G-31
Get Counter, G-48
Get Frequency, G-56
Get Off-Latch, G-102
Get Off-Pulse Measurement, G-103
Get Off-Pulse Measurement Complete Sta-

tus, G-104
Get Off-Time Totalizer, G-105
Get On-Latch, G-106
Get On-Pulse Measurement, G-107
Get On-Pulse Measurement Complete Sta-

tus, G-108

Get On-Time Totalizer, G-109
Get Period, G-110
Get Period Measurement Complete Status,

G-111
Off?, O-1
Off-Latch Set?, O-2
On?, O-3
On-Latch Set?, O-4
Set TPO Percent, S-84
Set TPO Period, S-85
Start Continuous Square Wave, S-94
Start Counter, S-95
Start Off-Pulse, S-96
Start On-Pulse, S-97
Stop Counter, S-101
Turn Off, T-25
Turn On, T-27

Disable Communication to All I/O Points, D-4
Disable Communication to All I/O Units, D-5
Disable Communication to Event/Reaction,

D-6
Disable Communication to I/O Unit, D-7
Disable Communication to Mistic PID Loop,

D-9
Disable Communication to PID Loop, D-10
Disable Communication to Point, D-11
Disable Event/Reaction Group, D-12
Disable I/O Unit Causing Current Error, D-13
Disable Mistic PID Output, D-14
Disable Mistic PID Output Tracking in Manual

Mode, D-15
Disable Mistic PID Setpoint Tracking in Man-

ual Mode, D-16
Disable Scanning for All Events, D-17
Disable Scanning for Event, D-18
Disable Scanning of Event/Reaction Group,

D-19
Divide, D-20
Down Timer Expired?, D-21

E
Enable Communication to All I/O Points, E-1
Enable Communication to All I/O Units, E-2
Enable Communication to Event/Reaction, E-3
Enable Communication to I/O Unit, E-4
Enable Communication to Mistic PID Loop, E-5
Enable Communication to PID Loop, E-6
ioControl Command Reference Index-3

Enable Communication to Point, E-7
Enable Event/Reaction Group, E-8
Enable I/O Unit Causing Current Error, E-9
Enable Mistic PID Output, E-10
Enable Mistic PID Output Tracking in Manual

Mode, E-11
Enable Mistic PID Setpoint Tracking in Manu-

al Mode, E-12
Enable Scanning for All Events, E-13
Enable Scanning for Event, E-14
Enable Scanning of Event/Reaction Group,

E-15
Equal to Numeric Table Element?, E-17
Equal?, E-16
Erase Files in Permanent Storage, E-18
error handling

Add Message to Queue, A-4
Add User Error to Queue, A-5
Add User I/O Unit Error to Queue, A-6
Caused a Chart Error?, C-7
Caused an I/O Unit Error?, C-8
Clear All Errors, C-18
Copy Current Error to String, C-58
Disable I/O Unit Causing Current Error,

D-13
Enable I/O Unit Causing Current Error, E-9
Error on I/O Unit?, E-20
Error?, E-19
Get Error Code of Current Error, G-52
Get Error Count, G-53
Get ID of Block Causing Current Error, G-64
Get Line Causing Current Error, G-84
Get Name of Chart Causing Current Error,

G-98
Get Name of I/O Unit Causing Current Error,

G-99
Get Severity of Current Error, G-137
Remove Current Error and Point to Next Er-

ror, R-22
Stop Chart on Error, S-100
Suspend Chart on Error, S-107

Error on I/O Unit?, E-20
Error?, E-19
Event Occurred?, E-21
Event Occurring?, E-22
Event Scanning Disabled?, E-25
Event Scanning Enabled?, E-26
event/reaction

Clear All Event Latches, C-19
Clear Event Latch, C-23
Disable Scanning for All Events, D-17
Disable Scanning for Event, D-18
Disable Scanning of Event/Reaction Group,

D-19
Enable Scanning for All Events, E-13
Enable Scanning for Event, E-14
Enable Scanning of Event/Reaction Group,

E-15
Event Occurred?, E-21
Event Occurring?, E-22
Event Scanning Disabled?, E-25
Event Scanning Enabled?, E-26
Get & Clear Event Latches, G-19
Get Event Latches, G-54
Read Event/Reaction Hold Buffer, R-4

Event/Reaction Communication Enabled?,
E-23

Event/Reaction Group Communication En-
abled?, E-24

F
Find Character in String, F-1
Find Substring in String, F-2
Float Valid?, F-3

G
Generate Checksum on String, G-1
Generate Forward CCITT on String, G-3
Generate Forward CRC-16 on String, G-4
Generate N Pulses, G-5
Generate Random Number, G-6
Generate Reverse CCITT on String, G-7
Generate Reverse CRC-16 on String, G-8
Generate Reverse CRC-16 on Table, G-9
Get & Clear All HDD Module Off-Latches,

G-10
Get & Clear All HDD Module On-Latches, G-12
Get & Clear Analog Filtered Value, G-14
Get & Clear Analog Maximum Value, G-15
Get & Clear Analog Minimum Value, G-16
Get & Clear Analog Totalizer Value, G-17
Get & Clear Counter, G-18
Get & Clear Event Latches, G-19
Get & Clear HDD Module Counter, G-20
Index-4 ioControl Command Reference

Get & Clear HDD Module Counters, G-21
Get & Clear HDD Module Off-Latches, G-22
Get & Clear HDD Module On-Latches, G-24
Get & Clear Off-Latch, G-25
Get & Clear On-Latch, G-26
Get & Restart Off-Pulse Measurement, G-27
Get & Restart Off-Time Totalizer, G-28
Get & Restart On-Pulse Measurement, G-29
Get & Restart On-Time Totalizer, G-30
Get & Restart Period, G-31
Get All HDD Module Off-Latches, G-32
Get All HDD Module On-Latches, G-34
Get All HDD Module States, G-36
Get Analog Filtered Value, G-38
Get Analog Maximum Value, G-39
Get Analog Minimum Value, G-40
Get Analog Square Root Filtered Value, G-41
Get Analog Square Root Value, G-42
Get Analog Totalizer Value, G-43
Get Available File Space, G-44
Get Chart Status, G-45
Get Communication Handle Value, G-46
Get Control Engine Address, G-46
Get Control Engine Type, G-47
Get Counter, G-48
Get Day, G-49
Get Day of Week, G-50
Get End-Of-Message Terminator, G-51
Get Error Code of Current Error, G-52
Get Error Count, G-53
Get Event Latches, G-54
Get Firmware Version, G-55
Get Frequency, G-56
Get HDD Module Counters, G-57
Get HDD Module Off-Latches, G-58
Get HDD Module On-Latches, G-60
Get HDD Module States, G-61
Get High Bits of Integer 64, G-62
Get Hours, G-63
Get I/O Unit as Binary Value, G-65
Get ID of Block Causing Current Error, G-64
Get Julian Day, G-82
Get Length of Table, G-83
Get Line Causing Current Error, G-84
Get Low Bits of Integer 64, G-85
Get Minutes, G-86
Get Mistic PID Control Word, G-87
Get Mistic PID D Term, G-88

Get Mistic PID I Term, G-89
Get Mistic PID Input, G-90
Get Mistic PID Mode, G-91
Get Mistic PID Output, G-92
Get Mistic PID Output Rate of Change, G-93
Get Mistic PID P Term, G-94
Get Mistic PID Scan Rate, G-95
Get Mistic PID Setpoint, G-96
Get Month, G-97
Get Name of Chart Causing Current Error,

G-98
Get Name of I/O Unit Causing Current Error,

G-99
Get Nth Character, G-100
Get Number of Characters Waiting, G-101
Get Off-Latch, G-102
Get Off-Pulse Measurement, G-103
Get Off-Pulse Measurement Complete Status,

G-104
Get Off-Time Totalizer, G-105
Get On-Latch, G-106
Get On-Pulse Measurement, G-107
Get On-Pulse Measurement Complete Status,

G-108
Get On-Time Totalizer, G-109
Get Period, G-110
Get Period Measurement Complete Status,

G-111
Get PID Configuration Flags, G-112
Get PID Current Input, G-113
Get PID Current Setpoint, G-114
Get PID Feed Forward, G-115
Get PID Feed Forward Gain, G-116
Get PID Forced Output When Input Over

Range, G-117
Get PID Forced Output When Input Under

Range, G-118
Get PID Gain, G-119
Get PID Input, G-120
Get PID Input High Range, G-121
Get PID Input Low Range, G-122
Get PID Max Output Change, G-123
Get PID Min Output Change, G-124
Get PID Mode, G-125
Get PID Output, G-126
Get PID Output High Clamp, G-127
Get PID Output Low Clamp, G-128
Get PID Scan Time, G-129
ioControl Command Reference Index-5

Get PID Setpoint, G-130
Get PID Status Flags, G-131
Get PID Tune Derivative, G-132
Get PIDTune Integral, G-133
Get Pointer From Name, G-134
Get Seconds, G-135
Get Seconds Since Midnight, G-136
Get Severity of Current Error, G-137
Get String Length, G-138
Get Substring, G-139
Get System Time, G-140
Get Target Address State, G-141
Get Type From Name, G-142, S-5
Get Value From Name, G-143
Get Year, G-145
Greater Than Numeric Table Element?, G-147
Greater Than or Equal to Numeric Table Ele-

ment?, G-149
Greater Than or Equal?, G-148
Greater?, G-146

H
high density digital module

Clear HDD Module Off-Latches, C-24
Clear HDD Module On-Latches, C-25
Get & Clear All HDD Module Off-Latches,

G-10
Get & Clear All HDD Module On-Latches,

G-12
Get & Clear HDD Module Counter, G-20
Get & Clear HDD Module Counters, G-21
Get & Clear HDD Module Off-Latches, G-22
Get & Clear HDD Module On-Latches, G-24
Get All HDD Module Off-Latches, G-32
Get All HDD Module On-Latches, G-34
Get All HDD Module States, G-36
Get HDD Module Counters, G-57
Get HDD Module Off-Latches, G-58
Get HDD Module On-Latches, G-60
Get HDD Module States, G-61
Set HDD Module from MOMO Masks, S-23
Turn Off HDD Module Point, T-26
Turn OnHDD Module Point, T-28

Hyperbolic Cosine, H-1
Hyperbolic Sine, H-2
Hyperbolic Tangent, H-3

I
I/O Point Communication Enabled?, I-2
I/O unit

Get I/O Unit as Binary Value, G-65
Get Target Address State, G-141
I/O Unit Ready?, I-4
IVAL Move Numeric Table to I/O Unit, I-5
Move I/O Unit to Numeric Table, M-12
Move Numeric Table to I/O Unit, M-14
Set Digital I/O Unit from MOMO Masks,

S-18
Set Digital-64 I/O Unit from MOMO Masks,

S-19
Set I/O Unit Event Message State, S-26
Set I/O Unit Event Message Text, S-27
Set I/O Unit from MOMO Masks, S-29
Set Mixed 64 I/O Unit from MOMO Masks,

S-54
Set Mixed I/O Unit from MOMO Masks,

S-55
Set Simple 64 I/O Unit from MOMO Masks,

S-79
Set Target Address State, S-81
Write I/O Unit Configuration to EEPROM,

W-2
I/O Unit Communication Enabled?, I-3
I/O Unit Ready?, I-4
I/O unit—memory map

Read Number from I/O Unit Memory Map,
R-5

Read Numeric Table from I/O Unit Memory
Map, R-7

Read String from I/O Unit Memory Map,
R-9

Read String Table from I/O Unit Memory
Map, R-11

Write Number to I/O Unit Memory Map,
W-3

Write Numeric Table to I/O Unit Memory
Map, W-4

Write String Table to I/O Unit Memory
Map, W-7

Write String to I/O Unit Memory Map, W-9
Increment Variable, I-1
IVAL Move Numeric Table to I/O Unit, I-5
IVAL Set Analog Point, I-6
IVAL Set Counter, I-7
IVAL Set Digital Binary, I-8
Index-6 ioControl Command Reference

IVAL Set Digital-64 I/O Unit from MOMO
Masks, I-9

IVAL Set Frequency, I-10
IVAL Set I/O Unit from MOMO Masks, I-11
IVAL Set Mistic PID Control Word, I-13
IVAL Set Mistic PID Process Term, I-14
IVAL Set Mixed 64 I/O Unit from MOMO

Masks, I-15
IVAL Set Mixed I/O Unit from MOMO Masks,

I-16
IVAL Set Off-Latch, I-18
IVAL Set Off-Pulse, I-19
IVAL Set Off-Totalizer, I-20
IVAL Set On-Latch, I-21
IVAL Set On-Pulse, I-22
IVAL Set On-Totalizer, I-23
IVAL Set Period, I-24
IVAL Set Simple 64 I/O Unit from MOMO

Masks, I-25
IVAL Set TPO Percent, I-26
IVAL Set TPO Period, I-27
IVAL Turn Off, I-28
IVAL Turn On, I-29

L
Less Than Numeric Table Element?, L-2
Less Than or Equal to Numeric Table Ele-

ment?, L-4
Less Than or Equal?, L-3
Less?, L-1
Listen for Incoming Communication, L-5
Load Files From Permanent Storage, L-7
logical

AND, A-7
AND?, A-8
Bit AND, B-1
Bit AND?, B-3
Bit Clear, B-4
Bit NOT, B-5
Bit NOT?, B-7
Bit Off?, B-8
Bit On?, B-9
Bit OR, B-10
Bit OR?, B-12
Bit Rotate, B-13
Bit Set, B-14
Bit Shift, B-15

Bit Test, B-17
Bit XOR, B-18
Bit XOR?, B-20
Equal to Numeric Table Element?, E-17
Equal?, E-16
Get High Bits of Integer 64, G-62
Get Low Bits of Integer 64, G-85
Greater Than Numeric Table Element?,

G-147
Greater Than or Equal to Numeric Table El-

ement?, G-149
Greater Than or Equal?, G-148
Greater?, G-146
Less Than Numeric Table Element?, L-2
Less Than or Equal to Numeric Table Ele-

ment?, L-4
Less Than or Equal?, L-3
Less?, L-1
Make Integer 64, M-1
Move 32 Bits, M-7
NOT, N-2
Not Equal to Numeric Table Element?, N-5
Not Equal?, N-4
NOT?, N-3
Numeric Table Element Bit Clear, N-6
Numeric Table Element Bit Set, N-7
Numeric Table Element Bit Test, N-8
OR, O-6
OR?, O-7
Set Variable False, S-87
Set Variable True, S-88
Test Equal, T-2
Test Greater, T-4
Test Greater or Equal, T-5
Test Less, T-6
Test Less or Equal, T-7
Test Not Equal, T-8
Test Within Limits, T-9
Variable False?, V-1
Variable True?, V-2
Within Limits?, W-1
XOR, X-1
XOR?, X-2

M
Make Integer 64, M-1
mathematical
ioControl Command Reference Index-7

Absolute Value, A-1
Add, A-3
Arccosine, A-11
Arcsine, A-12
Arctangent, A-13
Clamp Float Table Element, C-12
Clamp Float Variable, C-13
Clamp Integer 32 Table Element, C-14
Clamp Integer 32 Variable, C-15
Complement, C-36
Cosine, C-62
Decrement Variable, D-1
Divide, D-20
Generate Random Number, G-6
Hyperbolic Cosine, H-1
Hyperbolic Sine, H-2
Hyperbolic Tangent, H-3
Increment Variable, I-1
Maximum, M-2
Minimum, M-3
Modulo, M-5
Multiply, M-25
Natural Log, N-1
Raise e to Power, R-1
Raise to Power, R-2
Round, R-24
Seed Random Number, S-4
Sine, S-91
Square Root, S-92
Subtract, S-105
Tangent, T-1
Truncate, T-24

Maximum, M-2
Minimum, M-3
miscellaneous

Comment (Block), C-30
Comment (Single Line), C-31
Float Valid?, F-3
Generate Reverse CRC-16 on Table, G-9
Get Length of Table, G-83
Get Type From Name, G-142, S-5
Get Value From Name, G-143
Move, M-6
Move from Numeric Table Element, M-8
Move Numeric Table Element to Numeric

Table, M-13
Move Numeric Table to Numeric Table,

M-15

Move to Numeric Table Element, M-17
Move to Numeric Table Elements, M-18
Shift Numeric Table Elements, S-90

mistic PID
Clamp Mistic PID Output, C-16
Clamp Mistic PID Setpoint, C-17
Disable Mistic PID Output, D-14
Disable Mistic PID Output Tracking in Man-

ual Mode, D-15
Disable Mistic PID Setpoint Tracking in

Manual Mode, D-16
Enable Mistic PID Output, E-10
Enable Mistic PID Output Tracking in Man-

ual Mode, E-11
Enable Mistic PID Setpoint Tracking in

Manual Mode, E-12
Get Mistic PID Control Word, G-87
Get Mistic PID D Term, G-88
Get Mistic PID I Term, G-89
Get Mistic PID Input, G-90
Get Mistic PID Mode, G-91
Get Mistic PID Output, G-92
Get Mistic PID Output Rate of Change, G-93
Get Mistic PID P Term, G-94
Get Mistic PID Scan Rate, G-95
Get Mistic PID Setpoint, G-96
Set Mistic PID Control Word, S-44
Set Mistic PID D Term, S-45
Set Mistic PID I Term, S-46
Set Mistic PID Input, S-47
Set Mistic PID Mode to Auto, S-48
Set Mistic PID Mode to Manual, S-49
Set Mistic PID Output Rate of Change, S-50
Set Mistic PID P Term, S-51
Set Mistic PID Scan Rate, S-52
Set Mistic PID Setpoint, S-53

Modulo, M-5
Move, M-6
Move 32 Bits, M-7
Move from Numeric Table Element, M-8
Move from Pointer Table Element, M-9
Move from String Table Element, M-10
Move I/O Unit to Numeric Table, M-12
Move Numeric Table Element to Numeric Ta-

ble, M-13
Move Numeric Table to I/O Unit, M-14
Move Numeric Table to Numeric Table, M-15
Move String, M-16
Index-8 ioControl Command Reference

Move to Numeric Table Element, M-17
Move to Numeric Table Elements, M-18
Move to Pointer, M-19
Move to Pointer Table Element, M-21
Move to String Table Element, M-23
Move to String Table Elements, M-24
Multiply, M-25

N
Natural Log, N-1
NOT, N-2
Not Equal to Numeric Table Element?, N-5
Not Equal?, N-4
Not?, N-3
Numeric Table Element Bit Clear, N-6
Numeric Table Element Bit Set, N-7
Numeric Table Element Bit Test, N-8

O
Off?, O-1
Off-Latch Set?, O-2
On?, O-3
On-Latch Set?, O-4
Open Outgoing Communication, O-4
OR, O-6
OR?, O-7

P
Pause Timer, P-1
PID

Get PID Configuration Flags, G-112
Get PID Current Input, G-113
Get PID Current Setpoint, G-114
Get PID Feed Forward, G-115
Get PID Feed Forward Gain, G-116
Get PID Forced Output When Input Over

Range, G-117
Get PID Forced Output When Input Under

Range, G-118
Get PID Gain, G-119
Get PID Input, G-120
Get PID Input High Range, G-121
Get PID Input Low Range, G-122
Get PID Max Output Change, G-123
Get PID Min Output Change, G-124

Get PID Mode, G-125
Get PID Output, G-126
Get PID Output High Clamp, G-127
Get PID Output Low Clamp, G-128
Get PID Scan Time, G-129
Get PID Setpoint, G-130
Get PID Status Flags, G-131
Get PID Tune Derivative, G-132
Get PID Tune Integral, G-133
Set PID Configuration Flags, S-59
Set PID Feed Forward, S-60
Set PID Feed Forward Gain, S-61
Set PID Forced Output When Input Over

Range, S-62
Set PID Forced Output When Input Under

Range, S-63
Set PID Gain, S-64
Set PID Input, S-65
Set PID Input High Range, S-66
Set PID Input Low Range, S-67
Set PID Max Output Change, S-68
Set PID Min Output Change, S-69
Set PID Mode, S-70
Set PID Output, S-71
Set PID Output High Clamp, S-72
Set PID Output Low Clamp, S-73
Set PID Scan Time, S-74
Set PID Setpoint, S-75
Set PID Tune Derivative, S-76
Set PID Tune Integral, S-77

PID Loop Communication Enabled?, M-4, P-2
Pointer Equal to NULL?, P-3
Pointer Table Element Equal to NULL?, P-4
pointers

Clear Pointer, C-28
Clear Pointer Table Element, C-28
Get Pointer From Name, G-134
Move from Pointer Table Element, M-9
Move to Pointer, M-19
Move to Pointer Table Element, M-21
Pointer Equal to NULL?, P-3
Pointer Table Element Equal to NULL?, P-4

Product Support, -xviii

R
Raise e to Power, R-1
Raise to Power, R-2
ioControl Command Reference Index-9

Ramp Analog Output, R-3
Read Event/Reaction Hold Buffer, R-4
Read Number from I/O Unit Memory Map, R-5
Read Numeric Table from I/O Unit Memory

Map, R-7
Read String from I/O Unit Memory Map, R-9
Read String Table from I/O Unit Memory Map,

R-11
Receive Character, R-13
Receive N Characters, R-14
Receive Numeric Table, R-16
Receive Pointer Table, R-17
Receive String, R-19
Receive String Table, R-21
Remove Current Error and Point to Next Error,

R-22
Retrieve Strategy CRC, R-23
Round, R-24

S
Save Files To Permanent Storage, S-1
Seed Random Number, S-4
Send Communication Handle Command, S-2
Set Analog Filter Weight, S-7
Set Analog Gain, S-8
Set Analog Load Cell Fast Settle Level, S-9
Set Analog Load Cell Filter Weight, S-10
Set Analog Offset, S-11
Set Analog Totalizer Rate, S-12
Set Analog TPO Period, S-14
Set Communication Handle Value, S-15
Set Date, S-16
Set Day, S-17
Set Digital I/O Unit from MOMO Masks, S-18
Set Digital-64 I/O Unit from MOMO Masks,

S-19
Set Down Timer Preset Value, S-21
Set End-Of-Message Terminator, S-22
Set HDD Module from MOMO Masks, S-23
Set Hours, S-25
Set I/O Unit Event Message State, S-26
Set I/O Unit Event Message Text, S-27
Set I/O Unit from MOMO Masks, S-29
Set Minutes, S-43
Set Mistic PID Control Word, S-44
Set Mistic PID I Term, S-46
Set Mistic PID Input, S-47

Set Mistic PID Mode to Auto, S-48
Set Mistic PID Mode to Manual, S-49
Set Mistic PID Output Rate of Change, S-50
Set Mistic PID P Term, S-51
Set Mistic PID Scan Rate, S-52
Set Mistic PID Setpoint, S-53
Set Mixed 64 I/O Unit from MOMO Masks,

S-54
Set Mixed I/O Unit from MOMO Masks, S-55
Set Month, S-57
Set Nth Character, S-58
Set PID Configuration Flags, S-59
Set PID Feed Forward, S-60
Set PID Feed Forward Gain, S-61
Set PID Forced Output When Input Over

Range, S-62
Set PID Forced Output When Input Under

Range, S-63
Set PID Gain, S-64
Set PID Input, S-65
Set PID Input High Range, S-66
Set PID Input Low Range, S-67
Set PID Max Output Change, S-68
Set PID Min Output Change, S-69
Set PID Mode, S-70
Set PID Output, S-71
Set PID Output High Clamp, S-72
Set PID Output Low Clamp, S-73
Set PID Scan Time, S-74
Set PID Setpoint, S-75
Set PID Tune Derivative, S-76
Set PID Tune Integral, S-77
Set Seconds, S-78
Set Simple 64 I/O Unit from MOMO Masks,

S-79
Set Target Address State, S-81
Set Time, S-83
Set TPO Percent, S-84
Set TPO Period, S-85
Set Up Timer Target Value, S-86
Set Variable False, S-87
Set Variable True, S-88
Set Year, S-89
SetMistic PID D Term, S-45
Shift Numeric Table Elements, S-90
simulation

Communication to All I/O Points Enabled?,
C-33
Index-10 ioControl Command Reference

Communication to All I/O Units Enabled?,
C-34

Disable Communication to All I/O Points,
D-4

Disable Communication to All I/O Units,
D-5

Disable Communication to Event/Reaction,
D-6

Disable Communication to I/O Unit, D-7
Disable Communication to Mistic PID Loop,

D-9
Disable Communication to PID Loop, D-10
Disable Communication to Point, D-11
Disable Event/Reaction Group, D-12
Enable Communication to All I/O Points, E-1
Enable Communication to All I/O Units, E-2
Enable Communication to Event/Reaction,

E-3
Enable Communication to I/O Unit, E-4
Enable Communication to Mistic PID Loop,

E-5
Enable Communication to PID Loop, E-6
Enable Communication to Point, E-7
Enable Event/Reaction Group, E-8
Enable Mistic PID Output, E-10
Event/Reaction Communication Enabled?,

E-23
Event/Reaction Group Communication En-

abled?, E-24
I/O Point Communication Enabled?, I-2
I/O Unit Communication Enabled?, I-3
IVAL Set Analog Point, I-6
IVAL Set Counter, I-7
IVAL Set Digital Binary, I-8
IVAL Set Digital-64 I/O Unit from MOMO

Masks, I-9
IVAL Set Frequency, I-10
IVAL Set I/O Unit from MOMO Masks, I-11
IVAL Set Mistic PID Control Word, I-13
IVAL Set Mistic PID Process Term, I-14
IVAL Set Mixed 64 I/O Unit from MOMO

Masks, I-15
IVAL Set Mixed I/O Unit from MOMO

Masks, I-16
IVAL Set Off-Latch, I-18
IVAL Set Off-Pulse, I-19
IVAL Set Off-Totalizer, I-20
IVAL Set On-Latch, I-21

IVAL Set On-Pulse, I-22
IVAL Set On-Totalizer, I-23
IVAL Set Period, I-24
IVAL Set Simple 64 I/O Unit from MOMO

Masks, I-25
IVAL Set TPO Percent, I-26
IVAL Set TPO Period, I-27
IVAL Turn Off, I-28
IVAL Turn On, I-29
PID Loop Communication Enabled?, M-4,

P-2
Sine, S-91
speed tips, C-46, D-20, M-25, O-1, O-3, S-87,

S-88, T-25, T-27
Square Root, S-92
Start Chart, S-93
Start Continuous Square Wave, S-94
Start Counter, S-95
Start Off-Pulse, S-96
Start On-Pulse, S-97
Start Timer, S-98
Stop Chart, S-99
Stop Chart on Error, S-100
Stop Counter, S-101
Stop Timer, S-102
string

Append Character to String, A-9
Append String to String, A-10
Compare Strings, C-35
Convert Float to String, C-40
Convert Hex String to Number, C-41
Convert IEEE Hex String to Number, C-42
Convert Integer 32 to IP Address String,

C-43
Convert IP Address String to Integer 32,

C-44
Convert Number to Formatted Hex String,

C-46
Convert Number to Hex String, C-48
Convert Number to String, C-50
Convert Number to String Field, C-51
Convert String to Float, C-52
Convert String to Integer 32, C-54
Convert String to Integer 64, C-55
Convert String to Lower Case, C-56
Convert String to Upper Case, C-57
Find Character in String, F-1
Find Substring in String, F-2
ioControl Command Reference Index-11

Generate Checksum on String, G-1
Generate Forward CCITT on String, G-3
Generate Forward CRC-16 on String, G-4
Generate Reverse CCITT on String, G-7
Generate Reverse CRC-16 on String, G-8
Get Nth Character, G-100
Get String Length, G-138
Get Substring, G-139
Move from String Table Element, M-10
Move String, M-16
Move to String Table Element, M-23
Move to String Table Elements, M-24
Set Nth Character, S-58
String Equal to String Table Element?,

S-104
String Equal?, S-103
Test Equal Strings, T-3
Verify Checksum on String, V-3
Verify Forward CCITT on String, V-4
Verify Forward CRC-16 on String, V-5
Verify Reverse CCITT on String, V-6
Verify Reverse CRC-16 on String, V-7

String Equal to String Table Element?, S-104
String Equal?, S-103
Subtract, S-105
Suspend Chart, S-106
Suspend Chart on Error, S-107

T
table

Get Length of Table, G-83
Less Than Numeric Table Element?, L-2
Less Than or Equal to Numeric Table Ele-

ment?, L-4
Move from Numeric Table Element, M-8
Move from Pointer Table Element, M-9
Move from String Table Element, M-10
Move I/O Unit to Numeric Table, M-12
Move Numeric Table Element to Numeric

Table, M-13
Move Numeric Table to I/O Unit, M-14
Move Numeric Table to Numeric Table,

M-15
Move to Numeric Table Element, M-17
Move to Numeric Table Elements, M-18
Move to String Table Element, M-23
Move to String Table Elements, M-24

Not Equal to Numeric Table Element?, N-5
Shift Numeric Table Elements, S-90

Tangent, T-1
Test Equal, T-2
Test Equal Strings, T-3
Test Greater, T-4
Test Greater or Equal, T-5
Test Less, T-6
Test Less or Equal, T-7
Test Not Equal, T-8
Test Within Limits, T-9
time/date

Copy Date to String (DD/MM/YYYY), C-59
Copy Date to String (MM/DD/YYYY), C-60
Copy Time to String, C-61
Get Day, G-49
Get Day of Week, G-50
Get Hours, G-63
Get Julian Day, G-82
Get Minutes, G-86
Get Month, G-97
Get Seconds, G-135
Get Seconds Since Midnight, G-136
Get System Time, G-140
Get Year, G-145
Set Date, S-16
Set Day, S-17
Set Hours, S-25
Set Minutes, S-43
Set Month, S-57
Set Seconds, S-78
Set Time, S-83
Set Year, S-89

Timer Expired?, T-10
timing

Continue Timer, C-39
Delay (mSec), D-2
Delay (Sec), D-3
Down Timer Expired?, D-21
Pause Timer, P-1
Set Down Timer Preset Value, S-21
Set Up Timer Target Value, S-86
Start Timer, S-98
Stop Timer, S-102
Timer Expired?, T-10
Up Timer Target Time Reached?, U-1

Transfer N Characters, T-11
Transmit Character, T-13
Index-12 ioControl Command Reference

Transmit NewLine, T-14
Transmit Numeric Table, T-15
Transmit PointerTable, T-16
Transmit String, T-22
Transmit String Table, T-23
Transmit/Receive Mistic I/O Hex String with

Checksum, T-18
Transmit/Receive String, T-20
troubleshooting

Product Support, -xviii
Truncate, T-24
Turn Off, T-25
Turn Off HDD Module Point, T-26
Turn On, T-27
Turn OnHDD Module Point, T-28

U
Up Timer Target Time Reached?, U-1

V
Variable False?, V-1

Variable True?, V-2
Verify Checksum on String, V-3
Verify Forward CCITT on String, V-4
Verify Forward CRC-16 on String, V-5
Verify Reverse CCITT on String, V-6
Verify Reverse CRC-16 on String, V-7

W
Within Limits?, W-1
Write I/O Unit Configuration to EEPROM, W-2
Write Number to I/O Unit Memory Map, W-3
Write Numeric Table to I/O Unit Memory

Map, W-4
Write String Table to I/O Unit Memory Map,

W-7
Write String to I/O Unit Memory Map, W-9

X
XOR, X-1
XOR?, X-2
ioControl Command Reference Index-13

	Table of Contents
	Welcome
	A
	Absolute Value
	Accept Incoming Communication
	Add
	Add Message to Queue
	Add User Error to Queue
	Add User I/O Unit Error to Queue
	AND
	AND?
	Append Character to String
	Append String to String
	Arccosine
	Arcsine
	Arctangent

	B
	Bit AND
	Bit AND?
	Bit Clear
	Bit NOT
	Bit NOT?
	Bit Off?
	Bit On?
	Bit OR
	Bit OR?
	Bit Rotate
	Bit Set
	Bit Shift
	Bit Test
	Bit XOR
	Bit XOR?

	C
	Calculate & Set Analog Gain
	Calculate & Set Analog Offset
	Calculate Strategy CRC
	Call Chart
	Calling Chart Running?
	Calling Chart Stopped?
	Calling Chart Suspended?
	Caused a Chart Error?
	Caused an I/O Unit Error?
	Chart Running?
	Chart Stopped?
	Chart Suspended?
	Clamp Float Table Element
	Clamp Float Variable
	Clamp Integer 32 Table Element
	Clamp Integer 32 Variable
	Clamp Mistic PID Output
	Clamp Mistic PID Setpoint
	Clear All Errors
	Clear All Event Latches
	Clear All Latches
	Clear Communication Receive Buffer
	Clear Counter
	Clear Event Latch
	Clear HDD Module Off-Latches
	Clear HDD Module On-Latches
	Clear Off-Latch
	Clear On-Latch
	Clear Pointer
	Clear Pointer Table Element
	Clear Receive Buffer
	Close Communication
	Comment (Block)
	Comment (OptoControl Conversion Issue)
	Comment (Single Line)
	Communication Open?
	Communication to All I/O Points Enabled?
	Communication to All I/O Units Enabled?
	Compare Strings
	Complement
	Continue Calling Chart
	Continue Chart
	Continue Timer
	Convert Float to String
	Convert Hex String to Number
	Convert IEEE Hex String to Number
	Convert Integer 32 to IP Address String
	Convert IP Address String to Integer 32
	Convert Mistic I/O Hex String to Float
	Convert Number to Formatted Hex String
	Convert Number to Hex String
	Convert Number to Mistic I/O Hex String
	Convert Number to String
	Convert Number to String Field
	Convert String to Float
	Convert String to Integer 32
	Convert String to Integer 64
	Convert String to Lower Case
	Convert String to Upper Case
	Copy Current Error to String
	Copy Date to String (DD/MM/YYYY)
	Copy Date to String (MM/DD/YYYY)
	Copy Time to String
	Cosine

	D
	Decrement Variable
	Delay (mSec)
	Delay (Sec)
	Disable Communication to All I/O Points
	Disable Communication to All I/O Units
	Disable Communication to Event/Reaction
	Disable Communication to I/O Unit
	Disable Communication to Mistic PID Loop
	Disable Communication to PID Loop
	Disable Communication to Point
	Disable Event/Reaction Group
	Disable I/O Unit Causing Current Error
	Disable Mistic PID Output
	Disable Mistic PID Output Tracking in Manual Mode
	Disable Mistic PID Setpoint Tracking in Manual Mode
	Disable Scanning for All Events
	Disable Scanning for Event
	Disable Scanning of Event/Reaction Group
	Divide
	Down Timer Expired?

	E
	Enable Communication to All I/O Points
	Enable Communication to All I/O Units
	Enable Communication to Event/Reaction
	Enable Communication to I/O Unit
	Enable Communication to Mistic PID Loop
	Enable Communication to PID Loop
	Enable Communication to Point
	Enable Event/Reaction Group
	Enable I/O Unit Causing Current Error
	Enable Mistic PID Output
	Enable Mistic PID Output Tracking in Manual Mode
	Enable Mistic PID Setpoint Tracking in Manual Mode
	Enable Scanning for All Events
	Enable Scanning for Event
	Enable Scanning of Event/Reaction Group
	Equal?
	Equal to Numeric Table Element?
	Erase Files in Permanent Storage
	Error?
	Error on I/O Unit?
	Event Occurred?
	Event Occurring?
	Event/Reaction Communication Enabled?
	Event/Reaction Group Communication Enabled?
	Event Scanning Disabled?
	Event Scanning Enabled?

	F
	Find Character in String
	Find Substring in String
	Float Valid?

	G
	Generate Checksum on String
	Generate Forward CCITT on String
	Generate Forward CRC-16 on String
	Generate N Pulses
	Generate Random Number
	Generate Reverse CCITT on String
	Generate Reverse CRC-16 on String
	Generate Reverse CRC-16 on Table (32 bit)
	Get & Clear All HDD Module Off-Latches
	Get & Clear All HDD Module On-Latches
	Get & Clear Analog Filtered Value
	Get & Clear Analog Maximum Value
	Get & Clear Analog Minimum Value
	Get & Clear Analog Totalizer Value
	Get & Clear Counter
	Get & Clear Event Latches
	Get & Clear HDD Module Counter
	Get & Clear HDD Module Counters
	Get & Clear HDD Module Off-Latches
	Get & Clear HDD Module On-Latches
	Get & Clear Off-Latch
	Get & Clear On-Latch
	Get & Restart Off-Pulse Measurement
	Get & Restart Off-Time Totalizer
	Get & Restart On-Pulse Measurement
	Get & Restart On-Time Totalizer
	Get & Restart Period
	Get All HDD Module Off-Latches
	Get All HDD Module On-Latches
	Get All HDD Module States
	Get Analog Filtered Value
	Get Analog Maximum Value
	Get Analog Minimum Value
	Get Analog Square Root Filtered Value
	Get Analog Square Root Value
	Get Analog Totalizer Value
	Get Available File Space
	Get Chart Status
	Get Communication Handle Value
	Get Control Engine Address
	Get Control Engine Type
	Get Counter
	Get Day
	Get Day of Week
	Get End-Of-Message Terminator
	Get Error Code of Current Error
	Get Error Count
	Get Event Latches
	Get Firmware Version
	Get Frequency
	Get HDD Module Counters
	Get HDD Module Off-Latches
	Get HDD Module On-Latches
	Get HDD Module States
	Get High Bits of Integer 64
	Get Hours
	Get ID of Block Causing Current Error
	Get I/O Unit as Binary Value
	Get I/O Unit Event Message State
	Get I/O Unit Event Message Text
	Get I/O Unit Scratch Pad Bits
	Get I/O Unit Scratch Pad Float Element
	Get I/O Unit Scratch Pad Float Table
	Get I/O Unit Scratch Pad Integer 32 Element
	Get I/O Unit Scratch Pad Integer 32 Table
	Get I/O Unit Scratch Pad String Element
	Get I/O Unit Scratch Pad String Table
	Get Julian Day
	Get Length of Table
	Get Line Causing Current Error
	Get Low Bits of Integer 64
	Get Minutes
	Get Mistic PID Control Word
	Get Mistic PID D Term
	Get Mistic PID I Term
	Get Mistic PID Input
	Get Mistic PID Mode
	Get Mistic PID Output
	Get Mistic PID Output Rate of Change
	Get Mistic PID P Term
	Get Mistic PID Scan Rate
	Get Mistic PID Setpoint
	Get Month
	Get Name of Chart Causing Current Error
	Get Name of I/O Unit Causing Current Error
	Get Nth Character
	Get Number of Characters Waiting
	Get Off-Latch
	Get Off-Pulse Measurement
	Get Off-Pulse Measurement Complete Status
	Get Off-Time Totalizer
	Get On-Latch
	Get On-Pulse Measurement
	Get On-Pulse Measurement Complete Status
	Get On-Time Totalizer
	Get Period
	Get Period Measurement Complete Status
	Get PID Configuration Flags
	Get PID Current Input
	Get PID Current Setpoint
	Get PID Feed Forward
	Get PID Feed Forward Gain
	Get PID Forced Output When Input Over Range
	Get PID Forced Output When Input Under Range
	Get PID Gain
	Get PID Input
	Get PID Input High Range
	Get PID Input Low Range
	Get PID Max Output Change
	Get PID Min Output Change
	Get PID Mode
	Get PID Output
	Get PID Output High Clamp
	Get PID Output Low Clamp
	Get PID Scan Time
	Get PID Setpoint
	Get PID Status Flags
	Get PID Tune Derivative
	Get PID Tune Integral
	Get Pointer From Name
	Get Seconds
	Get Seconds Since Midnight
	Get Severity of Current Error
	Get String Length
	Get Substring
	Get System Time
	Get Target Address State
	Get Type From Name
	Get Value From Name
	Get Year
	Greater?
	Greater Than Numeric Table Element?
	Greater Than or Equal?
	Greater Than or Equal To Numeric Table Element?

	H
	Hyperbolic Cosine
	Hyperbolic Sine
	Hyperbolic Tangent

	I
	Increment Variable
	I/O Point Communication Enabled?
	I/O Unit Communication Enabled?
	I/O Unit Ready?
	IVAL Move Numeric Table to I/O Unit
	IVAL Set Analog Point
	IVAL Set Counter
	IVAL Set Digital Binary
	IVAL Set Digital-64 I/O Unit from MOMO Masks
	IVAL Set Frequency
	IVAL Set I/O Unit from MOMO Masks
	IVAL Set Mistic PID Control Word
	IVAL Set Mistic PID Process Term
	IVAL Set Mixed 64 I/O Unit from MOMO Masks
	IVAL Set Mixed I/O Unit from MOMO Masks
	IVAL Set Off-Latch
	IVAL Set Off-Pulse
	IVAL Set Off-Totalizer
	IVAL Set On-Latch
	IVAL Set On-Pulse
	IVAL Set On-Totalizer
	IVAL Set Period
	IVAL Set Simple 64 I/O Unit from MOMO Masks
	IVAL Set TPO Percent
	IVAL Set TPO Period
	IVAL Turn Off
	IVAL Turn On

	L
	Less?
	Less Than Numeric Table Element?
	Less Than or Equal?
	Less Than or Equal to Numeric Table Element?
	Listen for Incoming Communication
	Load Files From Permanent Storage

	M
	Make Integer 64
	Maximum
	Minimum
	Mistic PID Loop Communication Enabled?
	Modulo
	Move
	Move 32 Bits
	Move from Numeric Table Element
	Move from Pointer Table Element
	Move from String Table Element
	Move I/O Unit to Numeric Table
	Move Numeric Table Element to Numeric Table
	Move Numeric Table to I/O Unit
	Move Numeric Table to Numeric Table
	Move String
	Move to Numeric Table Element
	Move to Numeric Table Elements
	Move to Pointer
	Move to Pointer Table Element
	Move to String Table Element
	Move to String Table Elements
	Multiply

	N
	Natural Log
	NOT
	NOT?
	Not Equal?
	Not Equal to Numeric Table Element?
	Numeric Table Element Bit Clear
	Numeric Table Element Bit Set
	Numeric Table Element Bit Test

	O
	Off?
	Off-Latch Set?
	On?
	On-Latch Set?
	Open Outgoing Communication
	OR
	OR?

	P
	Pause Timer
	PID Loop Communication Enabled?
	Pointer Equal to NULL?
	Pointer Table Element Equal to NULL?

	R
	Raise e to Power
	Raise to Power
	Ramp Analog Output
	Read Event/Reaction Hold Buffer
	Read Number from I/O Unit Memory Map
	Read Numeric Table from I/O Unit Memory Map
	Read String from I/O Unit Memory Map
	Read String Table from I/O Unit Memory Map
	Receive Character
	Receive N Characters
	Receive Numeric Table
	Receive Pointer Table
	Receive String
	Receive String Table
	Remove Current Error and Point to Next Error
	Retrieve Strategy CRC
	Round

	S
	Save Files To Permanent Storage
	Send Communication Handle Command
	Seed Random Number
	Set All Target Address States
	Set Analog Filter Weight
	Set Analog Gain
	Set Analog Load Cell Fast Settle Level
	Set Analog Load Cell Filter Weight
	Set Analog Offset
	Set Analog Totalizer Rate
	Set Analog TPO Period
	Set Communication Handle Value
	Set Date
	Set Day
	Set Digital I/O Unit from MOMO Masks
	Set Digital-64 I/O Unit from MOMO Masks
	Set Down Timer Preset Value
	Set End-Of-Message Terminator
	Set HDD Module from MOMO Masks
	Set Hours
	Set I/O Unit Event Message State
	Set I/O Unit Event Message Text
	Set I/O Unit from MOMO Masks
	Set I/O Unit Scratch Pad Bits from MOMO Mask
	Set I/O Unit Scratch Pad Float Element
	Set I/O Unit Scratch Pad Float Table
	Set I/O Unit Scratch Pad Integer 32 Element
	Set I/O Unit Scratch Pad Integer 32 Table
	Set I/O Unit Scratch Pad String Element
	Set I/O Unit Scratch Pad String Table
	Set Minutes
	Set Mistic PID Control Word
	Set Mistic PID D Term
	Set Mistic PID I Term
	Set Mistic PID Input
	Set Mistic PID Mode to Auto
	Set Mistic PID Mode to Manual
	Set Mistic PID Output Rate of Change
	Set Mistic PID P Term
	Set Mistic PID Scan Rate
	Set Mistic PID Setpoint
	Set Mixed 64 I/O Unit from MOMO Masks
	Set Mixed I/O Unit from MOMO Masks
	Set Month
	Set Nth Character
	Set PID Configuration Flags
	Set PID Feed Forward
	Set PID Feed Forward Gain
	Set PID Forced Output When Input Over Range
	Set PID Forced Output When Input Under Range
	Set PID Gain
	Set PID Input
	Set PID Input High Range
	Set PID Input Low Range
	Set PID Max Output Change
	Set PID Min Output Change
	Set PID Mode
	Set PID Output
	Set PID Output High Clamp
	Set PID Output Low Clamp
	Set PID Scan Time
	Set PID Setpoint
	Set PID Tune Derivative
	Set PID Tune Integral
	Set Seconds
	Set Simple 64 I/O Unit from MOMO Masks
	Set Target Address State
	Set Time
	Set TPO Percent
	Set TPO Period
	Set Up Timer Target Value
	Set Variable False
	Set Variable True
	Set Year
	Shift Numeric Table Elements
	Sine
	Square Root
	Start Chart
	Start Continuous Square Wave
	Start Counter
	Start Off-Pulse
	Start On-Pulse
	Start Timer
	Stop Chart
	Stop Chart on Error
	Stop Counter
	Stop Timer
	String Equal?
	String Equal to String Table Element?
	Subtract
	Suspend Chart
	Suspend Chart on Error

	T
	Tangent
	Test Equal
	Test Equal Strings
	Test Greater
	Test Greater or Equal
	Test Less
	Test Less or Equal
	Test Not Equal
	Test Within Limits
	Timer Expired?
	Transfer N Characters
	Transmit Character
	Transmit NewLine
	Transmit Numeric Table
	Transmit Pointer Table
	Transmit/Receive Mistic I/O Hex String
	Transmit/Receive String
	Transmit String
	Transmit String Table
	Truncate
	Turn Off
	Turn Off HDD Module Point
	Turn On
	Turn On HDD Module Point

	U
	Up Timer Target Time Reached?

	V
	Variable False?
	Variable True?
	Verify Checksum on String
	Verify Forward CCITT on String
	Verify Forward CRC-16 on String
	Verify Reverse CCITT on String
	Verify Reverse CRC-16 on String

	W
	Within Limits?
	Write I/O Unit Configuration to EEPROM
	Write Number to I/O Unit Memory Map
	Write Numeric Table to I/O Unit Memory Map
	Write String Table to I/O Unit Memory Map
	Write String to I/O Unit Memory Map

	X
	XOR
	XOR?

	Opto 22 Brain Families
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

